抗疟疾耐药性是打击全球疟疾传播的迫切问题。在一项新的研究中,费城儿童医院(CHOP)的研究人员发现了一个关键过程,其中疟疾寄生虫占据了人类血细胞酶,这可以为抗疟疾治疗提供新的方法。这些发现发表在《美国国家科学院》杂志上,提供了有关如何设计药物的新见解,这些药物更有效地治疗受这种毁灭性传染病影响的患者。
摘要全球糖尿病和疟疾的负担需要对药物开发的创新方法,而植物来源的化合物则作为有前途的候选者。本综述研究了基于植物性的生物活性化合物对开发抗糖尿病和抗疟疾疗法的潜力。这些化合物的作用机制,包括它们调节葡萄糖代谢和战斗疟疾寄生虫的能力。关键问题,例如生物多样性损失,有限的资金和监管障碍,强调了跨学科研究和协作的需求。未来的方向包括将传统医学与现代药理结合,增强生物技术方法以及建立可持续的药物开发管道。这些努力强调了植物来源化合物在应对全球健康挑战方面的变革潜力。关键词:植物来源的化合物,抗糖尿病药,抗疟药,生物活性化合物,药物发现。
疟疾主要由恶性疟原虫引起,仍然是一个严重的公共卫生问题,因此需要开发新的抗疟药物。恶性疟原虫热休克蛋白 90 (Hsp90) 对寄生虫的生存不可或缺,也是一种很有前途的药物靶点。针对 N 端结构域的 ATP 结合口袋的抑制剂具有抗疟原虫作用。我们提出了一种从头主动学习 (AL) 驱动的方法,结合对接来预测具有独特支架和对 PfHsp90 优先选择性的抑制剂。预测在 ATP 结合口袋处与 PfHsp90 结合并具有抗疟原虫活性的参考化合物被用于生成 10,000 种独特衍生物并建立自动定量结构活性关系 (QSAR) 模型。进行滑动对接以预测衍生物和从 ChEMBL 数据库获得的 15,000 多种化合物的对接得分。对模型进行反复训练和测试,直到最佳的基于 Kennel 的偏最小二乘 (KPLS) 回归模型达到收敛,该模型的训练集回归系数 R2 = 0.75,测试集的平方相关预测 Q2 = 0.62。使用诱导拟合对接和分子动力学模拟重新评分使我们能够优先考虑 15 种 ATP/ADP 类设计理念以供购买。这些化合物对恶性疟原虫 NF54 菌株表现出中等活性,IC 50 值为 ÿ 6 μ M,对 PfHsp90 表现出中等至弱亲和力(KD 范围:13.5–19.9 μ M),与报道的 ADP 亲和力相当。最有效的化合物是 FTN-T5(PfN54 IC 50:1.44 μ M;HepG2/CHO 细胞 SI ÿ 29),它以中等亲和力(KD:7.7 μ M)与 PfHsp90 结合,为优化工作提供了起点。我们的工作证明了 AL 在快速识别用于药物发现的新分子(即命中识别)方面具有巨大实用性。FTN-T5 的效力对于设计物种选择性抑制剂以开发更有效的抗疟药物至关重要。
在准备使用R21/MATRIX-M™的大规模疫苗接种时,结合了二氢二氨酸蛋白酶,Piperaquine和单个低剂量底喹的大规模施用,我们评估了这种组合的耐受性,安全性和潜在相互作用,从而影响免疫性或药物动力学。120个健康的泰国志愿者被随机分配,以接收抗疟疾与疫苗接种(n = 50),单独接种疫苗(n = 50)或仅抗疟药(n = 20)。相隔一个月的三轮疫苗和抗疟疾。该疫苗单独耐受良好,并与抗疟药结合使用。没有参与者未能完成3剂疫苗课程。在疫苗免疫原性或单独或组合给出的管道喹的药代动力学中没有显着差异。这项研究支持针对R21/MATRIX-M™进行大规模疫苗接种的大规模试验,并在孟加拉国结合了质量抗疟药。
第 7 届非洲征集提案 提交给 MMV 的截止日期:2024 年 8 月 30 日星期五,中午 12:00(CEST) 请仔细阅读说明。 提交内容应按照模板在 2 页 A4 纸上完成。请仅使用黑色 Arial 11 字体并以 word 文档形式发送。 MMV 将仅以 Word 格式接收电子提交;请参阅本文件末尾的联系方式并使用网站上提供的随附模板。 MMV 专家外部审阅者将对使用提供的指南和模板概述非洲项目的 2 页提案进行竞争性评估。然后,将根据科学价值选出最多三项获得资助。尽可能完整和简洁地呈现所有相关数据符合您的利益。下面提供了一些有关此方面的指导方针。 请注意:如果您有几种方法或潜在项目希望提出资助,则每种方法都应作为单独的项目申请提交。在准备申请时,请记住,审阅者已经熟悉疟疾、疟疾化疗和抗疟药物需求的关键问题。因此,请关注关键信息、化学结构和数据。您的提案应仅限于与药物发现有关的细节。要获得本次征集的资助资格,MMV 仅欢迎来自非洲流行地区科学家提交的提案,重点关注以下优先领域: 在任何抗疟生命周期阶段具有确认活性的化合物具有确认活性的新型分子(EC50 < 10uM)和解决任何已知或预期责任的药物化学计划。根据 MMV 战略目标,将优先考虑具有优化潜力的化合物,作为人体半衰期 >120 小时的化学预防药物。 检测开发和筛选检测开发和筛选以支持新型抗疟药的发现或开发。 计算机辅助药物发现 使用计算方法(化学信息学和/或生物信息学)发现具有预测抗疟活性的新分子或新的抗疟药物靶点。 以下信息将帮助您准备一份有针对性的申请。 要使用意向书 (LOI) 申请,您应该使用网站上提供的非洲意向书模板。 您的申请的第一页应该概述: 项目标题 首席研究员和合作伙伴(如果相关)的联系方式,以及项目内的职责范围,以及他们专业知识和对团队贡献的简洁描述。
摘要:需要采用新型作用方式的新药来保护疟疾治疗。近年来,已经测试了数百万种化合物的能力,以抑制无性血液阶段恶性疟原虫寄生虫的生长,从而鉴定出数千种具有抗血流活性的化合物。确定抗白潮化合物的作用机制可以为它们的进一步发展提供了依据,但仍然具有挑战性。相对较高的化合物比例被确定为杀死无性血液阶段的寄生虫,这表明靶向寄生虫的质膜Na + -truding,H + - 进口泵,PFATP4。PFATP4的抑制剂会导致寄生虫的内部[Na +]和pH的特征变化。 在这里,我们设计了一种“ pH指纹”测定法,该测定法可以鲁side pFATP4抑制剂,同时允许检测乳酸抑制剂(和区分)乳酸抑制剂:H +转运蛋白PFFNT,PFFNT,这是验证的抗微药物靶标,以及V型h + h + aTPase的cansy 7,这是一个可能的cansy and and and and typ as and and and and sys。 在我们的pH指纹测定和随后的次要测定中,ZY19489没有显示出V型H + ATPase抑制pH调节的证据,这表明它在寄生虫中具有不同的作用方式。 pH指纹测定也有潜力鉴定蛋白团,酸加载Cl-转运蛋白(S)的抑制剂(对于分子识别(IES)仍然流行),并通过抑制葡萄糖转运蛋白转运蛋白PFHT PFHT或糖溶解作用而起作用。PFATP4的抑制剂会导致寄生虫的内部[Na +]和pH的特征变化。在这里,我们设计了一种“ pH指纹”测定法,该测定法可以鲁side pFATP4抑制剂,同时允许检测乳酸抑制剂(和区分)乳酸抑制剂:H +转运蛋白PFFNT,PFFNT,这是验证的抗微药物靶标,以及V型h + h + aTPase的cansy 7,这是一个可能的cansy and and and and typ as and and and and sys。在我们的pH指纹测定和随后的次要测定中,ZY19489没有显示出V型H + ATPase抑制pH调节的证据,这表明它在寄生虫中具有不同的作用方式。pH指纹测定也有潜力鉴定蛋白团,酸加载Cl-转运蛋白(S)的抑制剂(对于分子识别(IES)仍然流行),并通过抑制葡萄糖转运蛋白转运蛋白PFHT PFHT或糖溶解作用而起作用。因此,pH指纹测定提供了一个有效的起点,使一定比例的抗白质化合物与其作用机理相匹配。关键词:疟疾,恶性疟原虫,药物靶标,pH调节,离子稳态
在非洲之角和东非,与含青蒿素方案治疗后清除延迟有关的 PfKelch13 (K13) 突变正在增多。在非洲之角,622I 突变已在多个国家被发现,包括厄立特里亚、埃塞俄比亚、苏丹和索马里。值得注意的是,622I 突变存在于表现出 hrp2/3 缺失的寄生虫中,这使得通过传统的基于 hrp2 的快速诊断测试 (RDT) 很难检测到它们。在乌干达,各种 K13 突变似乎正在激增,某些地区在大多数采样寄生虫中显示出经验证的标志物的普遍性,表明对青蒿素具有部分耐药性。与此同时,在卢旺达,561H K13 突变正在蔓延,尽管 675V 突变在卢旺达西部更为普遍。坦桑尼亚也发现了 561H 突变,特别是在卢旺达边境附近的卡盖拉。四个非洲国家现已确认存在青蒿素部分耐药性,经验证的青蒿素部分耐药性标志物的患病率超过 5%,且有清除延迟的证据。这些国家是厄立特里亚、卢旺达、乌干达和坦桑尼亚联合共和国。在埃塞俄比亚和苏丹,人们怀疑存在青蒿素部分耐药性,因为研究发现 5% 以上的患者携带经验证与青蒿素部分耐药性有关的 K13 突变(622I),但清除延迟尚未得到证实。
摘要 每年有超过 600,000 例疟疾相关死亡病例,其中大部分是由恶性疟原虫引起的。几乎所有抗疟药都具有耐药性,因此毫无疑问需要具有替代作用方式的药物。FK506 结合蛋白 Pf FKBP35 因其对大环内酯化合物 FK506(他克莫司)的高亲和力而成为有前途的药物靶点,引起了人们的关注。虽然人们对用小分子靶向 Pf FKBP35 非常感兴趣,但该因子作为药物靶点的遗传验证尚不明确,其在寄生虫生物学中的作用仍然难以捉摸。在这里,我们表明限制 Pf FKBP35 水平对恶性疟原虫是致命的,并导致延迟死亡样表型,其特征是核糖体稳态缺陷和蛋白质合成停滞。我们的数据还表明,与该药物在模型生物中的作用不同,FK506 以 Pf FKBP35 独立的方式发挥其抗增殖活性,并且使用细胞热位移分析,我们确定了 Pf FKBP35 以外的假定 FK506 靶点。除了首次揭示 Pf FKBP35 的功能外,我们的结果还表明 FKBP 结合药物可以采用非典型作用模式——这对开发对抗疟原虫和其他真核病原体的 FK506 衍生分子具有重大意义。
疟原虫引起的感染给世界上最贫穷的社区带来了巨大的负担。我们迫切需要具有新作用机制的突破性药物。作为一种经历快速生长和分裂的生物体,疟原虫恶性疟原虫高度依赖蛋白质合成,而蛋白质合成又需要氨酰基-tRNA 合成酶 (aaRS) 为 tRNA 充电相应的氨基酸。蛋白质翻译是寄生虫生命周期所有阶段所必需的;因此,aaRS 抑制剂具有全生命周期抗疟活性的潜力。本综述重点介绍了使用表型筛选、靶标验证和结构引导药物设计来识别有效的疟原虫特异性 aaRS 抑制剂的努力。最近的研究表明,aaRS 是一类 AMP 模拟核苷磺酰胺的易感靶标,这些靶标通过一种新颖的反应劫持机制靶向酶。这一发现开辟了生成不同 aaRS 的定制抑制剂的可能性,从而提供了新的药物线索。
摘要 引言:近几十年来,以青蒿素为基础的联合疗法和传播控制措施的应用使得全球疟疾负担有所减轻。不幸的是,这种趋势正在逆转,部分原因是对现有治疗方法的耐药性,需要开发针对未开发靶点的新药以防止交叉耐药性。 涵盖的领域:鉴于蛋白激酶在非传染性疾病中已被证明具有可用药性,它们代表了颇具吸引力的靶点。激酶靶向支架和大量抑制剂库以及高通量表型和生化分析促进了以激酶为重点的抗疟药物的发现。我们概述了经过验证的疟原虫激酶靶点及其抑制剂,并简要讨论了宿主细胞激酶作为宿主导向治疗靶点的潜力。 专家意见:我们提出了优先研究领域,包括 (i) 疟原虫激酶靶点的多样化(目前大多数努力集中在极少数靶点上); (ii) 使用多药理学来限制耐药性(激酶抑制剂在这方面非常适合);(iii) 通过针对宿主的治疗(针对寄生虫生存所需的宿主细胞激酶)预先限制耐药性以及通过针对性阶段特异性激酶来阻断传播,作为保护治疗药物免于耐药性扩散的策略。