背景 - 行业现状 • 情况 - 复合材料传统上具有抗疲劳和腐蚀、减轻重量和其他飞机性能优势(航空外形、更大的切口) - 最近,制造成本节省、客户舒适度利益和损伤容限等额外优势正在推动更多应用 • 复合材料应用的扩展速度比
・我们在基本设计中设计了导体板部分,并确认与铝焊接结构相比,使用 1/1 比例的 CFRP 可以减轻桥体重量 25% 以上。针对这个结果,我们设计了一个导体板模型(简化模型)来进行测试。 ・此外,我们设计了连接机构和接头模型,并获得了连接机构的详细设计和制造前景,其静态强度和抗疲劳性能等于或高于铝焊接结构。
纤维金属层压板 (FML) 是组合粘合结构大家族中的一员,由薄金属板和纤维增强聚合物层粘合而成 [1]。FML 的混合概念因其卓越的抗疲劳性能以及抗冲击、耐腐蚀等优异的机械特性而闻名。FML 的一种变体 Glare 由交替粘合在一起的薄铝板和玻璃纤维环氧层制成,已被大规模用作空客 A380 的机身蒙皮和尾翼前缘蒙皮材料。与整体式金属板相比,FML 的卓越疲劳性能归因于疲劳裂纹尖端尾流中完整纤维提供的桥接机制,如图 1 所示。抗疲劳纤维保持完整并抑制金属层中裂纹的张开,从而使载荷从破裂的金属层转移到桥接纤维。这种桥接机制显著提高了金属层对疲劳裂纹扩展的抵抗力,因为它降低了裂纹尖端的应力严重程度。同时,由于开裂的金属层和桥接纤维之间以剪切形式传递的循环载荷,在复合材料/金属界面处发生了分层,这是 FML 中的一种伴随失效机制 [2] 。FML 中显著改善的抗疲劳性以及失效机制非常具有代表性,在一般组合结构中非常具有代表性
摘要 — 抗疲劳性能是用于航空航天和其他运输工具的柔性结构的主要特性之一。因此,在设计阶段特别注意评估寿命抗性参数。实际上,许多数值和分析方法可用于此目的,因为已经评估了标准化的实验测试程序。本文以电动机铜条为例,介绍了预测疲劳特性的主要分析和数值方法。然后,通过模拟操作条件下的实验活动验证了估计数据,揭示了不同模型的优点和缺点。关键词 — 疲劳分析模型、疲劳试验、有限元模型、机械疲劳、S-N 曲线。
在实践中应用材料时,注意力不可避免地关注他们对使用寿命的抵抗。在必须研究疲劳性抗性时,许多应用都会承受疲劳负荷。这通常需要进行各种实验测试。但是,这种实验是昂贵且耗时的,因此,它也值得开发有能力的模型来模拟资源密集型测试,并开发改进的Maperials及其制造过程Holopainen and Barriere(2018); Bennett和Horike(2018); Barriere等。(2019,2021); Zirak和Tcharkhtchi(2023)。开发先进的,现实的疲劳模型以及抗疲劳材料需要深入了解材料的微机械行为。著名的con-
所用材料。需求包括提高韧性、减轻重量、提高抗疲劳和腐蚀能力。随着制造商努力提高下一代飞机的性能和效率,材料性能的界限正在不断扩展。铝是面临这些挑战的关键材料之一。铝合金板用于大量航空航天应用,其复杂性和性能要求从简单部件到飞机的主要承重结构不等。第一个了解铝在航空航天工业中潜力的人是作家儒勒·凡尔纳,他在 1865 年的小说《月球之旅》中详细描述了铝火箭。1903 年,莱特兄弟让第一架飞机升空,其中发动机的部件由铝制成。
尽管复合材料用于机身结构有多种用途,但其主要优势在于重量轻。正如我们将在下文中详细讨论的那样,复合材料具有与金属相当的机械性能,例如强度和刚度,但比金属轻。复合材料还可以通过将几个不同的部件组合成一个部件(这种设计实践称为“单元化”)来实现更高效的结构设计。因此,当复合材料结构取代飞机中的金属设计时,机身更轻,航程和有效载荷能力更高。此外,复合材料在抗疲劳、腐蚀和耐损坏方面比金属更具优势。复合材料还具有其他特性,例如电导率、热导率和雷达透明性,使其成为隐形应用和机鼻雷达罩结构的理想材料。
尽管复合材料用于机身结构有多种用途,但其主要优势在于重量轻。正如我们将在下文中详细讨论的那样,复合材料具有与金属相当的机械性能,例如强度和刚度,但比金属轻。复合材料还可以通过将几个不同的部件组合成一个部件(这种设计实践称为“单元化”)来实现更高效的结构设计。因此,当复合材料结构取代飞机中的金属设计时,机身更轻,航程和有效载荷能力更高。此外,复合材料在抗疲劳、腐蚀和耐损坏方面比金属更具优势。复合材料还具有其他特性,例如电导率、热导率和雷达透明性,使其成为隐形应用和机鼻雷达罩结构的理想材料。
关于 CSIR-SERC CSIR-结构工程研究中心 (CSIR- SERC),钦奈是印度科学与工业研究理事会 (CSIR) 下属的国家实验室之一。CSIR-SERC 拥有用于分析、设计和测试结构和结构部件的卓越设施和专业知识。中央和州政府以及公共和私营部门企业正在广泛寻求 CSIR-SERC 的服务。CSIR-SERC 的科学家在许多国家和国际委员会任职,该中心在国家和国际层面被公认为结构工程领域的领先研究机构。关于课程本课程提供疲劳和断裂基本概念的必要背景知识,包括抗疲劳部件和结构的设计。研讨会为工程专业人员提供了一个熟悉疲劳和断裂力学领域最新发展的机会。本课程将重点介绍金属结构部件疲劳和断裂的实验和数值技术。课程中将涵盖的主题包括:
水凝胶因其独特的特性(例如高含水量、柔软性和生物相容性)而成为柔性电子产品的有前途的材料。从这个角度来看,我们概述了柔性电子产品中水凝胶的发展,重点关注三个关键方面:机械性能、界面粘附和导电性。我们讨论了设计高性能水凝胶的原理,并介绍了它们在医疗保健柔性电子产品领域的潜在应用的代表性示例。尽管取得了重大进展,但仍存在一些挑战,包括提高抗疲劳能力、增强界面粘附和平衡潮湿环境中的含水量。此外,我们强调了在未来研究中考虑水凝胶-细胞相互作用和水凝胶动态特性的重要性。展望未来,柔性电子产品中水凝胶的未来前景光明,令人兴奋的机遇即将出现,但需要继续投资研发以克服剩余的挑战。