与其他金属和复合材料相比,铝具有制造工艺简单、耐腐蚀、重量轻和成本低等优点[7]。设计飞机结构的重要参数包括抗疲劳性、密度、断裂韧性、强度和耐腐蚀性[7]。此外,在静态重量下受到拉伸时,上侧会产生压缩载荷,而下侧则相反;因此,在飞行过程中需要仔细优化拉伸和压缩强度[7]。因此,铝作为最轻的金属,可以轻松取代其他金属并承受由于飞机大型化而增加的机翼压力载荷[8]。在这方面,航空航天工业使用不同类型的铝合金,其中一些在表2中给出。然而,常见的类别大多来自2xxx和7xxx系列[9]。2000系列合金具有良好的抗疲劳裂纹扩展能力并拥有卓越的损伤容限。因此,它们通常用于飞机的机身蒙皮和下机翼,其中断裂韧性(即抗裂纹扩展)是一个重要的设计参数 [6] 。 Al2024-T3 是机身结构中最常用的 2000 系列合金 [10] 。 7000 系列通常用于上机翼蒙皮,其中强度是主要的设计因素 [6] 。 Al7075-T6 是
复合材料具有许多非常适合航空航天应用的特性。先进的石墨/环氧复合材料因其高刚度、强度重量比以及抗疲劳和腐蚀性而特别受到青睐。迄今为止,研究重点一直放在复合材料零件的设计和制造上,而对其后续组装的成本和质量问题关注较少。对于由先进复合材料制成的飞机结构,组装成本占总制造成本的百分比估计在 25% 到 50% 之间。波音商用飞机集团对这个主题特别感兴趣,该集团打算在其下一代客机 777 上采用复合材料主结构。本研究的核心问题是“先进复合材料结构装配生产率问题的根本原因是什么?”在波音公司制造业领袖赞助的实习期间,获得了与复合结构装配相关的以下数据和信息:(1) 定量指标,包括分配给每个装配任务的劳动力百分比、返工占直接劳动力总量的百分比、计划装配流程时间和零件可用性;(2) 来自与波音制造和设计人员的访谈、讨论和观察的定性信息。
制造过程中的数字控制产生了显着数量的元数据。生产过程元数据(例如热和光学测量)比未录制的制造和反馈以进行故障检测能力更高的财产分级。本研究探讨了元数据如何使用物理扎根的模型(例如密度功能理论,环状可塑性和训练机器学习算法的断裂力学)设计抗疲劳结构。机器学习模型在训练有素的物理空间中非常有效。相比之下,机械模型对于诸如疲劳等复杂现象的计算成本上很高。我们展示了如何通过基于能量的标准在所有尺度上始终如一地施用疲劳,以及如何基于此概念来构建机械功能。能量机械函数允许在某些负载边界条件下从制造中对现有量的效应进行精确定量。由于机械函数是局部的,并且是机器学习模型的预测量表的量表,因此它可用于构建密度函数,以用于上述量表上疲劳性质的概率回归。由于沉积过程中数字控制和元数据生成的可用性,该分析应用于选择性激光熔融过程。
电弧增材制造 (WAAM),也称为定向能量沉积 (DED) 工艺,是一种高效的增材制造技术,具有逐层快速制造具有复杂几何形状的大型部件的巨大潜力。然而,在将这种独特的技术应用于关键应用之前,需要在各个层面上显著提高对此类部件疲劳行为和材料要求的基本理解。这项工作旨在研究 WAAM 制造的 ER70S-6 钢在单轴、扭转和多轴载荷条件下的疲劳行为。以两个不同的方向提取样本:垂直和水平,以探索方向是否对疲劳结果有任何影响。进行扫描电子显微镜 (SEM) 检查断裂样品的断裂表面并确定裂纹起始区域和断裂机制。将获得的结果与文献中关于使用传统焊接和 WAAM 技术制造的常见结构钢的疲劳数据进行了比较,结果显示与锻造 S355 样品具有相似的疲劳行为。此外,根据 DNV RP-C203 连续焊缝标准对 ER70S-6 WAAM 试样的单轴数据集进行了评估,结果证明所检查材料具有良好的抗疲劳性能。
进行了直齿轮耐久性试验和滚动体表面疲劳试验,以研究真空感应熔炼、真空电弧熔炼 (VIM-VAR) M50NiL 钢在先进飞机应用中用作齿轮钢,以确定其耐久性特性。并将结果与标准 VAR 和 VIM-VAR AISI 9310 齿轮材料的结果进行比较。使用由 VIM-VAR M50NiL 和 VAR 以及 VIM-VAR AISI 9310 制造的直齿轮和滚动接触杆进行了测试。齿轮节圆直径为 8.9 厘米 (3.5 英寸)。齿轮试验条件为入口油温为 320 K (116 F ),出口油温为 350 K (170 F ),最大赫兹应力为 1.71 GPa (248 ksi),转速为 10 000 rpm。在环境温度下进行台式滚动元件疲劳试验,杆速为 12 500 rpm,最大赫兹应力为 4.83 GPa (700 ksi)。VIM-VAR M5ONiL 齿轮的表面疲劳寿命分别是 VIM-VAR 和 VAR AISI 9310 齿轮的 4.5 倍和 11.5 倍。VIM-VAR M5ONiL 滚动接触杆的表面疲劳寿命分别是VIM-VAR 和 VAR AISI 9310。VIM-VAR M50NiL 材料表现出良好的抗疲劳剥落断裂性能,疲劳寿命远远优于 VIM-VAR 和 VAR AISI 9310 齿轮和滚动接触杆。
致谢 iv 概要 v 目录 viii 表格列表 xi 图表列表 xiii 名词术语 xvi 引言 1 2. 文献综述 5 2.1 抗疲劳设计 5 2.2 应变控制疲劳试验程序 7 2.2.1 历史和理论 7 2.2.2 带钢的应变控制疲劳 14 2.3 制造变量对疲劳性能的影响 15 2.3.1 成分 15 2.3.2 取样位置 17 2.3.3 带钢厚度 17 2.3.4 疲劳性能的各向异性 18 2.3.5 总结及在实验项目中的应用 18 2.4 一般材料性能与疲劳性能之间的关系疲劳性能 19 2.4.1 硬度和抗拉强度性能之间的关系。 19 2.4.2 循环应力-应变性能与抗拉强度性能和硬度之间的关系 20 2.4.3 循环应变-寿命性能与单调抗拉性能和硬度之间的关系 24 2.4.4 微观结构的影响 39 2.5 结论 39 3. 实验设计、材料、技术和结果 41 3.1 实验设计 41 3.1.1 多种钢材的疲劳性能表征 41 3.1.2 制造变量对疲劳响应的影响 42 3.1.3 钢材性能对疲劳响应的影响 45 3.2 材料; 45 3.2.1 钢材的来源和取样 45 3.2.2 钢材的描述 46 3.3 疲劳试验 49 3.3.1 方法 49 3.3.2 结果 53 3.3 微观结构和硬度 55 3.4.1 方法 55 3.4.2
Inconel 738 是一种镍基高温合金,由于具有抗疲劳、高屈服强度、耐腐蚀和热稳定性等优异性能,主要用于航空航天 [ 1-4 ] 和石油工业 [ 5 ] [ 6 ]。Inconel 738 高温合金的力学性能取决于微观结构参数,例如金属间化合物 γ ′ 相 (Ni 3 (Al, Ti)) 的体积分数以及 γ ′ 颗粒的尺寸、分布和形状[ 7-9 ]。然而,燃气轮机的发展导致使用温度越来越高,并且经常出现腐蚀问题 [ 1 , 2 ]。已经对不同的涂层进行了评估以增强腐蚀性能;例如,用于高温应用的涂层包括扩散和热障涂层 [ 10 ]。 Inconel 625 因含有高含量的铬、镍和钼 [11-13],保证了出色的耐腐蚀和抗氧化性能,被广泛用作腐蚀环境的涂层材料 [14]。Inconel 625 也是海洋环境和切削刀具的良好涂层 [15]。因此,可以预见,使用抗氧化涂层(如 Inconel 625)可以防止燃气轮机敏感部件受到严重损坏 [16]。在本研究中,通过横向激光熔覆在 Inconel 738 基材上涂覆了 Inconel 625 镍基高温合金。目前,有多种表面涂层方法可供选择,如机械法[17]、化学法[18-21]、溶胶-凝胶法[22]、氧化法[23,24]、渗碳法[25]、离子注入法[26,27]、热法[28,29]和熔覆法[30]。激光熔覆(LC)是一种先进的表面改性技术[31,32],常用于工业应用,例如
环氧树脂广泛用于电路板层压板、结构复合材料、粘合剂和表面涂层 [1]。热固性聚合物的交联度更高。环氧树脂具有更好的机械、物理和摩擦学性能,因此被用于结构应用。环氧树脂具有高模量、抗疲劳、低蠕变,并且在高温下也能很好地工作 [2-4]。交联密度越高,断裂韧性、抗裂纹起始和生长的刚度越低,这反过来限制了环氧树脂在现代应用中的使用 [5]。在环氧树脂固化过程中,交联链中会产生应力,这会降低断裂韧性、降低抗裂纹起始能力以及由于塑性变形而限制空隙的增长 [6,7]。通过改变环氧树脂的组成并混合不同的纳米填料作为第二阶段,可以应对这些挑战,从而实现高级复合材料应用 [8,9]。环氧树脂与纳米填料的混合可提高断裂韧性、刚度和强度[10]。这些纳米填料包括无机纳米颗粒,如粘土[11]、Al2O3[12]、ZrO2[13,14]和TiO2[4]。加入无机纳米填料如碳纳米管[15]和SiO2[5]后,表现出良好的机械性能,有趣的是,环氧树脂的韧性增加了,而基本性能没有改变。基质形态的变化主要是由于纳米填料渗透到致密的环氧交联网络之间。在目前的研究中,我们尝试生产SiO2/环氧树脂纳米复合材料。选择超声波技术,通过改变纳米填料的浓度来改变填料的粒径。
摘要:如今人们越来越倾向于晚睡,并将睡眠时间与各种电子设备一起度过。同时,BCI(脑机接口)康复设备采用视觉显示器,需要评估视觉疲劳问题,避免影响训练效果。因此,了解夜间黑暗环境下使用电子设备对人体视觉疲劳的影响非常重要。本文利用Matlab编写不同颜色范式刺激,使用屏幕亮度可调的4K显示器联合设计实验,利用眼动仪和g.tec脑电图(EEG)设备采集信号,然后进行数据处理和分析,最终得到不同颜色和不同屏幕亮度的组合对黑暗环境下人体视觉疲劳的影响。本研究让受试者评估其主观(李克特量表)感知,并在黑暗环境下(<3 lx)收集客观信号(瞳孔直径、θ+α频带数据)。 Likert量表显示,暗环境下较低的屏幕亮度可以降低受试者的视疲劳程度,受试者对蓝色的偏好高于红色。瞳孔数据显示,中高屏幕亮度下,视知觉敏感度更容易受到刺激,更容易加深视疲劳。EEG频段数据表明,典型颜色和屏幕亮度对视疲劳的影响并不显著。在此基础上,本文提出了一个新的指标——视觉抗疲劳指数,为优化室内居住环境,提高电子设备和BCI康复设备的使用满意度,以及保护人眼提供了有价值的参考。
781-3 动态信息标志。781-3.1 描述:根据合同文件中指定的详细信息提供和安装动态信息标志 (DMS)。781-3.1.1 一般规定:确保所有暴露的材料都具有耐腐蚀性。确保与 DMS 相关的电子设备不受损坏,并防止受潮、受尘、受污和受腐蚀。确保环境磁场或电磁场(包括任何系统组件产生的磁场或电磁场)不会对系统性能产生负面影响。确保系统不会传导或辐射干扰其他电气或电子设备的信号,包括但不限于其他控制系统和数据处理、音频、无线电和工业设备。确保 DMS 外壳符合第四版(2001 年)AASHTO 公路标志、灯具和交通信号结构支撑标准规范及其最新附录的抗疲劳性要求。设计和建造 DMS 单元,使其连续使用至少 20 年,标志结构的设计寿命为 50 年。确保 DMS 的制造、焊接和检验符合现行 ANSI/AWS 结构焊接规范-铝的要求。确保 DMS 及其组件(包括但不限于面板、接线端子和印刷电路板)上的所有标识标记均采用丝网印刷和密封或以其他方式不可擦除,使用的材料和方法由工程师批准。确保设备设计和制造采用最新可用技术,使用最少数量的不同零件、子组件、电路、卡和模块,以最大程度地提高标准化和通用性。确保设计的设备包括无需特殊工具即可进行访问和维护的规定。确保所有组件部件都易于进行检查和维护。提供标记的测试点以检查基本电压。确保所有外部连接都使用连接器终止。将连接器锁定以防止不正确的连接。