Al 2017 和 Al 2024 Carlson Nailon 1 , MF Mahmod 1,2 * 1 机械和制造工程学院, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, MALAYSIA 2 结构完整性和监测研究小组, 机械和制造工程学院, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja,马来西亚柔佛州 *通讯作者指定 DOI:https://doi.org/10.30880/rpmme.2021.02.02.101 于 2021 年 8 月 10 日收到; 2021 年 11 月 28 日接受; 2021 年 12 月 25 日在线提供摘要:选择前腿座椅的飞机部件材料需要对其物理性能进行大量研究,例如强度、延展性、耐腐蚀性,这些也会受到材料生产工艺和零件生产工艺的影响。制造飞机前腿座椅的材料多种多样,即铝合金,Al 2017 和 Al 2024。本文对 Al 2017 和 Al 2024 进行了拉伸试验和疲劳试验模拟,分析是在相同条件和负载下使用 Ansys Workbench 进行的。这些测试是使用两个圆柱形狗骨试样按照几何标准完成的;拉伸试验模拟为 ASTM E8-16a,疲劳试验模拟为 ASTM E466-07。拉伸试验和疲劳试验模拟分析是在其中一个试样端部施加 100 kN 力并在另一个试样端部施加固定支撑的情况下进行的。本研究通过拉伸试验模拟得出的结果表明,Al 2024 具有较高的屈服强度和拉伸极限强度,分别为 280 MPa 和 895.67 Mpa。同时,疲劳试验模拟确定 Al 2017 和 Al 2024 的疲劳寿命值相同,均为 1x10^8。在疲劳损伤方面,Al 2024 的疲劳损伤较小,为 4172.2,这意味着其安全系数较低,为 4.7198。因此,在本研究中,Al 2024 强度更高,抗疲劳性能优异。关键词:拉伸模拟、疲劳模拟、Ansys Workbench、铝 2024、铝 2017
Al 2017 和 Al 2024 Carlson Nailon 1 , MF Mahmod 1,2 * 1 机械和制造工程学院, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, MALAYSIA 2 结构完整性和监测研究小组, 机械和制造工程学院, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja,马来西亚柔佛州 *通讯作者指定 DOI:https://doi.org/10.30880/rpmme.2021.02.02.101 于 2021 年 8 月 10 日收到; 2021 年 11 月 28 日接受; 2021 年 12 月 25 日在线提供摘要:选择前腿座椅的飞机部件材料需要对其物理性能进行大量研究,例如强度、延展性、耐腐蚀性,这些也会受到材料生产工艺和零件生产工艺的影响。制造飞机前腿座椅的材料多种多样,即铝合金,Al 2017 和 Al 2024。本文对 Al 2017 和 Al 2024 进行了拉伸试验和疲劳试验模拟,分析是在相同条件和负载下使用 Ansys Workbench 进行的。这些测试是使用两个圆柱形狗骨试样按照几何标准完成的;拉伸试验模拟为 ASTM E8-16a,疲劳试验模拟为 ASTM E466-07。拉伸试验和疲劳试验模拟分析是在其中一个试样端部施加 100 kN 力并在另一个试样端部施加固定支撑的情况下进行的。本研究通过拉伸试验模拟得出的结果表明,Al 2024 具有较高的屈服强度和拉伸极限强度,分别为 280 MPa 和 895.67 Mpa。同时,疲劳试验模拟确定 Al 2017 和 Al 2024 的疲劳寿命值相同,均为 1x10^8。在疲劳损伤方面,Al 2024 的疲劳损伤较小,为 4172.2,这意味着其安全系数较低,为 4.7198。因此,在本研究中,Al 2024 强度更高,抗疲劳性能优异。关键词:拉伸模拟、疲劳模拟、Ansys Workbench、铝 2024、铝 2017
Al 2017 和 Al 2024 Carlson Nailon 1 , MF Mahmod 1,2 * 1 机械和制造工程学院, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, MALAYSIA 2 结构完整性和监测研究小组, 机械和制造工程学院, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja,马来西亚柔佛州 *通讯作者指定 DOI:https://doi.org/10.30880/rpmme.2021.02.02.101 于 2021 年 8 月 10 日收到; 2021 年 11 月 28 日接受; 2021 年 12 月 25 日在线提供摘要:选择前腿座椅的飞机部件材料需要对其物理性能进行大量研究,例如强度、延展性、耐腐蚀性,这些也会受到材料生产工艺和零件生产工艺的影响。制造飞机前腿座椅的材料多种多样,即铝合金,Al 2017 和 Al 2024。本文对 Al 2017 和 Al 2024 进行了拉伸试验和疲劳试验模拟,分析是在相同条件和负载下使用 Ansys Workbench 进行的。这些测试是使用两个圆柱形狗骨试样按照几何标准完成的;拉伸试验模拟为 ASTM E8-16a,疲劳试验模拟为 ASTM E466-07。拉伸试验和疲劳试验模拟分析是在其中一个试样端部施加 100 kN 力并在另一个试样端部施加固定支撑的情况下进行的。本研究通过拉伸试验模拟得出的结果表明,Al 2024 具有较高的屈服强度和拉伸极限强度,分别为 280 MPa 和 895.67 Mpa。同时,疲劳试验模拟确定 Al 2017 和 Al 2024 的疲劳寿命值相同,均为 1x10^8。在疲劳损伤方面,Al 2024 的疲劳损伤较小,为 4172.2,这意味着其安全系数较低,为 4.7198。因此,在本研究中,Al 2024 强度更高,抗疲劳性能优异。关键词:拉伸模拟、疲劳模拟、Ansys Workbench、铝 2024、铝 2017
Al 2017 和 Al 2024 Carlson Nailon 1 , MF Mahmod 1,2 * 1 机械和制造工程学院, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, MALAYSIA 2 结构完整性和监测研究小组, 机械和制造工程学院, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja,马来西亚柔佛州 *通讯作者指定 DOI:https://doi.org/10.30880/rpmme.2021.02.02.101 于 2021 年 8 月 10 日收到; 2021 年 11 月 28 日接受; 2021 年 12 月 25 日在线提供摘要:选择前腿座椅的飞机部件材料需要对其物理性能进行大量研究,例如强度、延展性、耐腐蚀性,这些也会受到材料生产工艺和零件生产工艺的影响。制造飞机前腿座椅的材料多种多样,即铝合金,Al 2017 和 Al 2024。本文对 Al 2017 和 Al 2024 进行了拉伸试验和疲劳试验模拟,分析是在相同条件和负载下使用 Ansys Workbench 进行的。这些测试是使用两个圆柱形狗骨试样按照几何标准完成的;拉伸试验模拟为 ASTM E8-16a,疲劳试验模拟为 ASTM E466-07。拉伸试验和疲劳试验模拟分析是在其中一个试样端部施加 100 kN 力并在另一个试样端部施加固定支撑的情况下进行的。本研究通过拉伸试验模拟得出的结果表明,Al 2024 具有较高的屈服强度和拉伸极限强度,分别为 280 MPa 和 895.67 Mpa。同时,疲劳试验模拟确定 Al 2017 和 Al 2024 的疲劳寿命值相同,均为 1x10^8。在疲劳损伤方面,Al 2024 的疲劳损伤较小,为 4172.2,这意味着其安全系数较低,为 4.7198。因此,在本研究中,Al 2024 强度更高,抗疲劳性能优异。关键词:拉伸模拟、疲劳模拟、Ansys Workbench、铝 2024、铝 2017
纤维金属层压板 (FML) 是一大类组合粘合结构,由粘合有纤维增强聚合物层的薄金属板组成 [1]。FML 的混合概念因其出色的抗疲劳性以及抗冲击、耐腐蚀等其他优异的机械特性而闻名。FML 的一种变体 Glare 由交替粘合在一起的薄铝板和玻璃纤维环氧层制成,已在空客 A380 上大规模用作机身蒙皮和尾翼前缘蒙皮材料。与单片金属板相比,FML 的优异疲劳性能归因于完整纤维在疲劳裂纹尖端后提供的桥接机制,如图所示。1。抗疲劳纤维保持完整,并抑制金属层中裂纹的张开,从而使载荷从开裂的金属层转移到桥接纤维。这种桥接机制显著增强了金属层对疲劳裂纹扩展的抵抗力,因为它降低了裂纹尖端的应力严重程度。同时,由于开裂的金属层和桥接纤维之间以剪切形式循环传递载荷,在复合材料/金属界面处发生分层,这是 FML 中的一种伴随失效机制 [2] 。FML 中显著改善的抗疲劳性和失效机制非常具有代表性,是广泛应用于各个工程领域的一般组合胶接结构中的代表。组合粘合结构提供的定制裂纹延迟功能通常用于航空航天工业的安全关键结构 [4,5] 。冗余负载路径和损伤阻止功能,例如机身撕裂带、疲劳裂纹延迟器 [6,7] 和裂纹阻止器 [8] ,最好通过粘合剂粘合到蒙皮板上,以减缓疲劳裂纹扩展,并允许定期检查以检测疲劳裂纹。组合结构的这些功能与适航法规推荐的损伤容限设计理念相得益彰。通常采用粘合技术而不是机械紧固来向蒙皮板添加额外的负载路径,以避免与紧固过程相关的应力集中和高成本 [5] 。粘合剂粘接解决方案还提供了隔离特定结构元件损坏的机会 [5] 。此外,含有裂纹的薄壁金属飞机结构通常通过将复合材料补片粘合到
具有高耐热、抗冲击和抗疲劳性能。通过快速成型工艺降低成本,从而提高部件制造效率。该材料适用于大规模生产具有高性能要求的航空航天结构部件。为了进一步支持该技术的引入,帝人创建了这种特定材料的材料卡,用于使用 Aniform ® 软件进行工艺模拟。这将有助于零件制造商和 OEM 优化热成型工艺,以便在短时间内以低成本获得此类材料的所有优势。帝人致力于成为一家支持未来社会的公司,利用其在开发和制造坚固而轻巧的高性能碳纤维产品方面的核心优势和能力,为减少飞机生命周期内的温室气体排放做出贡献。帝人作为飞机应用领域的领先解决方案提供商,将通过开发中下游产品线和相关应用(例如具有更高韧性和更高拉伸模量的经济高效的碳纤维以及包括热塑性预浸料在内的中间材料)来增强其下一代飞机市场。关于帝人集团 帝人集团 (TSE: 3401) 是一家技术驱动型全球集团,在环境价值、安全、保障和减灾以及人口变化和增强健康意识等领域提供先进的解决方案。帝人集团最初成立于 1918 年,是日本第一家人造丝制造商,现已发展成为一家独特的企业,涵盖三大核心业务领域:高性能材料,包括芳纶、碳纤维和复合材料,以及树脂和塑料加工、薄膜、聚酯纤维和产品加工;医疗保健,包括用于骨骼/关节、呼吸和心血管/代谢疾病、护理和症状前医疗保健的药品和家用医疗保健设备;以及 IT,包括用于医疗、企业和公共系统的 B2B 解决方案以及用于数字娱乐的套装软件和 B2C 在线服务。正如品牌宣言“人类化学,人类解决方案”所表达的那样,帝人集团坚定地致力于为利益相关者服务,旨在成为一家支持未来社会的公司。该集团由约 170 家公司组成,在全球 20 个国家/地区拥有约 20,000 名员工。截至 2022 年 3 月 31 日的财年,帝人集团的综合销售额为 9,261 亿日元(72 亿美元),总资产为 1,2,076 亿日元(94 亿美元)。新闻联系人帝人有限公司投资者和公共关系部 pr@teijin.co.jp