摘要:水稻(Oryza sativa)是全球主要作物,为亚洲国家等人口提供了食物,但水稻却不断受到各种疾病的威胁,危及全球粮食安全。准确了解抗病机制对于开发抗病水稻品种至关重要。传统的遗传图谱方法,如QTL图谱,为了解疾病的遗传基础提供了宝贵的见解。然而,水稻疾病的复杂性要求采取整体方法才能准确了解它。组学技术,包括基因组学、转录组学、蛋白质组学和代谢组学,能够全面分析生物分子,揭示水稻植株内复杂的分子相互作用。使用多组学数据的各种图谱技术的整合彻底改变了我们对水稻抗病性的认识。通过将遗传图谱与高通量组学数据集叠加,研究人员可以精确定位与抗病性相关的特定基因、蛋白质或代谢物。这种整合提高了与疾病相关的生物标志物的精确度,让我们更好地了解它们在抗病中的功能作用。通过这种整合来改善水稻抗病育种代表着农业科学的重大进步,因为更好地了解抗病结构背后的分子复杂性和相互作用可以更精确、更有效地开发抗病和高产的水稻品种。在这篇评论中,我们探讨了绘图和组学数据的整合如何对提高水稻抗病性的育种产生变革性影响。
1 孟加拉国农业大学兽医学院医学系,孟加拉国迈门辛 2202;aminul.vmed@bau.edu.bd 2 东北大学农业大学科学研究生院食品与饲料免疫学组,仙台 980-8572,日本;jcvillena@cerela.org.ar 3 东北大学农业科学研究生院食品与农业免疫学国际研究与教育中心 (CFAI) 畜牧免疫学组,仙台 980-8572,日本 4 孟加拉国农业大学兽医学院寄生虫学系,孟加拉国迈门辛 2202;sarony@bau.edu.bd 5 畜牧服务部,Krishi Khamar Sarak,Farmgate,达卡 1215,孟加拉国; mbozlur@gmail.com 6 埃尔吉耶斯大学农学院动物科学系,38039 开塞利,土耳其;mucinar@erciyes.edu.tr 7 华盛顿州立大学兽医学院兽医微生物学与病理学系,普尔曼,华盛顿州 99164,美国 8 乳酸杆菌参考中心(CERELA)免疫生物技术实验室,图库曼 4000,阿根廷 9 昆士兰大学加顿校区兽医学院,布里斯班 4072,澳大利亚 * 通讯地址:m.uddin2@uq.edu.au(MJU);haruki.kitazawa.c7@tohoku.ac.jp(香港);电话:+ 61-07-3870-0830(MJU);+ 81-22-757-4372(香港)
各种病原体引起的植物病害导致农作物产量严重下降,威胁全球粮食安全。植物免疫的遗传改良被认为是控制农作物病害最有效和可持续的方法。在过去十年中,我们对分子和基因组水平上植物免疫的理解有了很大的提高。结合生物技术的进步,特别是基于成簇的规律间隔短回文重复序列 (CRISPR)/Cas9 的基因组编辑,我们现在可以快速识别新的抗性基因并以前所未有的方式设计抗病农作物。在这篇综述中,我们总结了目前对植物免疫的认识,并概述了农作物抗病性改良的现有和新策略。我们还讨论了该领域现有的挑战,并提出了未来研究的方向。版权所有 © 2022,作者。中国科学院遗传与发育生物学研究所和中国遗传学会。由爱思唯尔有限公司和科学出版社出版。这是一篇根据 CC BY 许可 ( http://creativecommons.org/licenses/by/4.0/ ) 开放获取的文章。
使用 Kohl 和 Ascoli [13] 改进的间接酶联免疫吸附测定法对 IgY 浓度进行定量,并对洗涤和封闭缓冲液的体积、包被抗体的浓度、终止液的类型和微孔板读数仪的波长进行了修改。用紫外线灭菌后,用 2.5 µ g/mL 浓度的山羊抗 IgY 免疫球蛋白 G (IgG) (SAB3700195,Sigma-Aldrich) 作为捕获抗体包被微孔板。用 pH 9.6 的缓冲碳酸氢盐 (0.005 M 碳酸盐碳酸氢盐) 稀释抗体,并将微孔板在 4°C 下孵育过夜。用磷酸盐缓冲盐水和吐温-20 (PBST-20,pH 7.4) 清洗微孔板 3 次。随后用2%牛血清白蛋白(BSA)封闭微孔板(每孔100 µL),37 ℃孵育1 h,用0.05% PBST清洗微孔板3次,加入血清样品至100 µL(1:100稀释),37 ℃孵育1 h。
园艺作物易受各种生物胁迫源的影响,包括真菌、卵菌、细菌、病毒和根结线虫。这些病原体限制了园艺作物的生长、发育、产量和质量,也限制了它们的适应性和地理分布。园艺设施中的连作模式加剧了土传疾病,严重限制了产量、质量和生产力。本文回顾了通过创新策略(包括宿主诱导基因沉默 (HIGS)、靶向易感基因和砧木嫁接应用)赋予对不同疾病耐受性的机制的最新进展,以系统地探索园艺植物疾病的抗性机制。未来的工作应该使用这些策略结合分子生物学方法成功培育抗性品种。
病毒爆发的出现一直对全球公共卫生系统构成重大挑战。流感,人类免疫缺陷病毒(HIV),肝炎,埃博拉病毒以及最近严重严重的急性呼吸综合症冠状病毒2(SARS-COV-2)等病毒迫切需要有效的抗病毒剂来减轻这种爆发的影响。抗病毒药理学已经显着进化,开发了新型药物来瞄准病毒生命周期的各个阶段。这些进步不仅为现有感染提供了治疗选择,而且还有望解决未来的大流行。这些新型抗病毒药物的药理学涉及对它们的作用机理,药代动力学,药效学和临床意义的深刻理解,所有这些都有助于在病毒爆发期间优化其使用。
这项试验是一项随机,安慰剂对照的双盲人类挑战研究,该研究是在积极接种RSV的健康成年人中进行的。每天口服一次治疗五天时,评估了S-337395的抗病毒功效和安全性。与安慰剂组相比,S-337395治疗组显示出病毒负荷的统计学显着降低,从而达到了主要终点。在S-337395的最高剂量组中,病毒载荷降低了88.94%(p <0.0001),并且临床症状评分的统计学显着改善。此外,S-337395通常是安全且容忍良好的,没有严重或严重的不良事件,并且不依赖剂量的不良事件发生率或严重性。没有由于不利事件而中止的参与者。
由许可药物组成的摘要图书馆代表了调节人类生理过程的大量分子曲目,为发现宿主靶向抗病人提供了独特的机会。我们筛选了重新利用,集中救援和加速的Medchem(倒置),以大约12,000个分子重新使用库,用于宽光谱冠状病毒抗病毒药,发现了134种化合物,抑制了αOronavirus并映射到58个分子靶标。主要的靶标包括5-羟基氨基胺受体,多巴胺受体和细胞周期蛋白依赖性激酶。Gene knock-out of the drugs' host targets including cathepsin B and L (CTSB/L; VBY-825), the aryl hydrocarbon receptor (AHR; Phortress), the farnesyl-diphosphate farnesyltransferase 1 (FDFT1; P-3622), and the kelch-like ECH-associated protein 1 (KEAP1; Omaveloxolone), significantly调节HCOV-229E感染,提供了证据表明这些化合物通过对各自的宿主靶标的作用抑制了病毒。对所有134个主要的化合物进行SARS-COV-2和验证的对识别的原始细胞的验证,AHR激活配体,P-3622靶向FDFT1和OmavelOxolone,以及Omaveloxolone,该a和Omaveloxolone激活NFE2样的BZIP转录因子2(nFe2L2),该nfe 2(nFe2L2)的kap kap and and and and and and and and and and and and them keap kap keap,kap and and and and and and and and the trib kap, alpha-和betacor onavirus。 这项研究提供了HCOV-229E重新利用候选者的概述,并揭示了被不同冠状病毒劫持的新型潜在可吸毒的病毒宿主依赖性因素。对识别的原始细胞的验证,AHR激活配体,P-3622靶向FDFT1和OmavelOxolone,以及Omaveloxolone,该a和Omaveloxolone激活NFE2样的BZIP转录因子2(nFe2L2),该nfe 2(nFe2L2)的kap kap and and and and and and and and and and and and them keap kap keap,kap and and and and and and and and the trib kap, alpha-和betacor onavirus。这项研究提供了HCOV-229E重新利用候选者的概述,并揭示了被不同冠状病毒劫持的新型潜在可吸毒的病毒宿主依赖性因素。
欢迎使用Pinoy Biotek杂志的第四期!与农业部(DA Biotech)的菲律宾农业和渔业生物技术计划合作,我们很高兴与您分享旨在帮助菲律宾农业和渔业行业的不同技术。在这个问题上,我们重点介绍了抗病性作物,这些作物将帮助农民和食品生产者产生更高的产量。其中之一是金米,它将有助于解决菲律宾的维生素A缺乏症,还可以保护稻米作物免受疾病的侵害,尤其是通龙和细菌疫病。关于耐香蕉束顶部病毒(BBTV)的香蕉品种开发的文章强调了其有助于减少产量损失的潜力。在此问题上介绍了两个循环介导的等温扩增(LAMP)技术。用于Abaca病毒检测的Lampara套件有助于农民监测其屁股作物的状况,而Juan Amplification