癌症是特定器官中异常细胞的不受控制的分裂。在全球范围内,大约六分之一的死亡是由于癌症。尽管在全球范围内进行了大量的研究来找到治疗癌症,但这仍然是一个重大挑战。通过旨在干扰癌细胞中某些特异性或高度表达分子的癌症靶向癌症,这在治疗各种形式的癌症的治疗中是一种转移。药物输送系统的发展,特别是对癌细胞的开发,是一种常见的方法,可以成功提高功效并降低不同抗癌药的副作用。促性腺激素释放激素(GNRH)是一种天然发生的激素,受体在与生殖系统有关的许多类型的癌症中过表达过表达。使用GNRH衍生物作为靶向剂开发了几种药物输送系统。在这篇综述中,我们首先讨论GNRH及其受体在癌症中的作用。然后,我们对使用GnRH衍生物作为各种类型的GnRH受体过表达的癌症中的靶向剂进行了详细的见解。这些研究中的一些有希望的发现表明,GNRH受体靶向是有效指导抗癌治疗剂,诊断剂和核酸直接直接针对癌细胞的潜在策略。最后,在这些输送系统的临床试验中,当前的研究和建议对更成功结果的一些局限性得到了强调。
摘要:褪黑激素的饮食补充剂在全球范围内被广泛消费,发达国家是最大的消费者,估计的年增长率约为20%,直到2027年,主要在发展中国家。在其他应用中添加了广泛使用褪黑激素对睡眠障碍和特定问题(例如喷气滞后)的使用,例如抗衰老,抗压力,免疫系统激活,抗癌药等,通常没有处方。化学工业目前涵盖了褪黑激素市场需求的100%。是由几年前具有更多自然消费习惯的部门的动机,这种可能性从植物中获得褪黑激素的可能性,称为植物素,出现。最近,制药行业开发了经过遗传修饰的微生物,其在生物反应器中产生生物褪黑激素的能力已得到增强。本文回顾了褪黑激素消费的化学和生物合成的各个方面,主要是饮食补充剂。分析了从微生物和植物和藻类中获得植物素的利弊,以及天然褪黑激素的优势,避免了褪黑激素化学合成的不必要的化学副产品。最后,分析了这些新产品的经济和质量方面。
摘要:抗体 - 药物缀合物(ADC)是由单节抗体组成的复杂化学结构,作为与靶细胞的链接,该抗体与有效的细胞毒性药物(即有效负载)通过化学连接器结合。受Paul Ehrlich的理想抗癌药物作为“魔术子弹”的概念的启发,ADC也是高度特定的抗癌药,因为它们已被证明可以识别,结合和中和癌细胞,从而限制了正常细胞的损伤。ADC是治疗固体和血液系统恶性肿瘤的最新药物突破之一。的确,近年来,食品药品监督管理局和欧洲药品局已经批准了各种ADC来治疗多种癌症,从而导致了“改变实践”的方法。然而,尽管取得了这些成功,但尚无ADC用于治疗受肾细胞癌(RCC)影响的患者。在本文中,我们彻底回顾了当前的文献,并概述了临床前研究和临床试验,这些研究评估了RCC患者中ADC的活性和毒性。此外,我们仔细检查了潜在的原因,这些原因迄今为止阻碍了ADC在这些患者中的治疗成功。最后,我们讨论了新的策略,这些策略将改善ADC的发展及其在治疗RCC患者方面的效率。
由于其最佳氧化还原电势,铜酶介导的反应促进了基本生物学过程(即细胞呼吸,铁氧化,抗氧化剂防御)[9]。然而,过度浓度的铜可能会引发细胞毒性细胞损伤,如神经退行性疾病和癌症所涉及的所含义[10]。放松管制的铜代谢是造成Menkes和Wilson疾病的原因[11]。在这方面,调节Cu(i)代谢误导的配体提供了抵制这些病理状态的有吸引力的机会[12]。锌离子是多种酶的天然辅助因子,例如(i)基质金属蛋白酶(MMP),是导致细胞 - 授予细胞基质基质蛋白质降解的蛋白质降解,通常由抗癌化合物靶向[13]; (ii)人类碳酸酐酶(HCA),促进二氧化碳可逆性水合碳酸氢盐[14],其抑制剂表现出多种医疗应用(即利尿剂,抗惊厥药,作为肿瘤的抗癌药/诊断工具,抗肥胖剂); (iii)细菌金属β-乳糖酶(MBL)酶,促进β-乳酰胺抗生素降解。它们的抑制剂对于抵消对常用β-乳酰胺抗生素的耐药性至关重要[15,16]。
急性髓样白血病(AML)由恶性造血茎和祖细胞(HSPC)克隆造成正常造血的劫持。根据美国癌症学会的说法,AML是成年人口中第二大常见的白血病类型,占所有白血病病例的31%。5年生存率小于28%的AML患者的预后率显着较低(1)。尽管在治疗AML方面取得了很多进展,但这些疗法无法完全治愈该疾病。疾病复发很大程度上是由于白血病干细胞(LSC)从化学治疗药物和抗癌药中逃脱的。骨髓(BM)小裂被认为是通过BM微环境细胞与白血病细胞之间的双向相互作用而重塑的,以偏向AML的进展(2)。在白血病发生期间,BM生态位的恶化也会提高AML-HSPC和白血病爆炸增殖之间的竞争力(3)。理解正常造血过程中各种造血干细胞(HSC) - 氮相互作用变得很重要。进一步了解白血病期间BM壁ches重塑的动力学构成了现代癌症研究的组成部分。针对这些白血病壁ni,正在成为开发新型治疗AML治疗策略的新途径。
癌症是全球死亡的主要原因[1]。随着精确肿瘤学方面的进步,一些有针对性的抗癌药(TAM)改善了患有以前难以治疗的癌症患者的生存和生活质量[2-4],但是它们的高成本限制了他们的使用,可能对癌症患者的死亡率进行影响[5]。这引起了医疗保健专业人员的高度关注[6]。在美国等高收入国家中,TAR疗法主导了抗癌药物的支出[7],每种治疗的总靶向药物中位数估计比传统的化学疗法成本高123 072美元[8]。此外,TAM的价格上涨甚至威胁到保险患者的财务状况[9]。未解决的经济困难可能会导致次优治疗,治疗掉落,症状负担和早逝的风险增加[10,11]。在中国,对于转移性结直肠癌的一线或二线治疗,建议将化学疗法和西妥昔单抗或贝伐单抗结合的治疗方法作为高成本,但由于其高成本而接受它。使用化学疗法和TAMS的患者的平均每个周期直接医疗费用比单独使用化学疗法的患者高931.1美元[12]。
甘油醛-3-磷酸脱氢酶(GAPDH)是一种关键的糖酵解酶,在癌细胞的能量代谢中起着至关重要的作用,并已被认为是抗癌药物发展的宝贵目标。在一系列5个溶解的3-溴-4,5-二羟唑(BDHI)衍生物中,我们鉴定了螺旋形化合物11,它能够以更快的koning contens noverativitivity noveritivity与Koning conse nocents novers notive,它能够使重组的重组人共价抗反应率,而已知的酸性含量为potent hat of thangect hate hate hate hate of potenthg potenthg potec。计算研究证实,构象刚化对于稳定抑制剂与结合位点的相互作用至关重要,因此有利于随后的共价形成。对不同pH的固有弹头反应性的研究揭示了11种自由硫醇的反应性可忽略不计,强调了其与其他硫基团相对于HGAPDH的活化半胱氨酸有选择性反应的能力。化合物11在四种不同的胰腺癌细胞系中强烈降低了癌细胞的生长,其抗增生活性与HGAPDH的细胞内抑制良好相关。总体而言,我们的结果有资格11在Hibitor中具有有效的HGAPDH共价,具有中等的药物样反应性,可以进一步利用以发展抗癌药。
摘要:最近的报告表明,微管在双链DNA断裂修复中起着作用。我们在这里研究了微管相关蛋白TAU在放射和化学疗法中的作用。明显地,乳腺癌细胞系中TAU的表达降低导致阿霉素或X射线治疗后小鼠 - 六边形乳腺肿瘤体积的显着降低。此外,tau的敲门损害了经典的非同源最终结合途径,并导致对博来霉素和X射线的细胞反应得到改善。研究了Tau保护作用的机制,我们发现DNA中对双链断裂的反应的主要介体之一,肿瘤抑制剂p53结合蛋白1(53BP1)是在细胞质中隔离的,这是Tau下调的结果。我们证明了TAU允许53BP1通过伴侣伴侣微管蛋白传播来响应DNA损伤而转移到核。此外,TAU敲低化学敏化的癌细胞对形成DNA加合物(例如顺铂和奥沙利铂)的药物,并进一步提出TAU在调节DNA修复蛋白的核traffiffiffinfim tau中的一般作用。总的来说,这些结果表明,癌细胞中的tau表达可能是对响应DNA损害抗癌药的反应的分子标记。临床靶向tau可以使肿瘤对DNA损害治疗敏感。
摘要:抗体 - 药物缀合物(ADC)疗法,一种先进的治疗技术,包括抗体,化学接头和细胞毒性有效载荷,解决了传统化学疗法的局限性。本研究探讨了ADC疗法的关键要素,重点是抗体开发,接头设计和细胞毒性有效载荷。全球癌症发病率的上升导致对抗癌药的投资增加,从而导致ADC治疗市场的显着增长。在过去的二十年中,取得了显着的进展,到2022年,针对各种癌症的14种ADC治疗。出现了血液系统恶性肿瘤和实体瘤的多种ADC疗法,目前正在进行许多候选人进行临床试验。近年来,ADC治疗临床试验的提高了,以2022年启动了许多新的Therapies。研究与开发以及专利申请的加剧,特别是来自辉瑞公司(纽约,纽约,美国),Abbvie Pharmaceuticals Inc.(USA),Regeneron Pharmaceuticals Inc.(Tarrytown,Tarrytown,NY,NY,USA,USA)和Seagen Inc.等主要公司。虽然ADC治疗在抗癌治疗方面具有巨大的希望,但挑战仍然存在,包括释放过早有效载荷和免疫相关的副作用。正在进行的研究和创新对于推进ADC疗法至关重要。未来的发展可能包括新颖的结合方法,稳定的接头设计,有效的有效载荷输送技术以及与纳米技术的整合,推动了ADC治疗在抗癌治疗中的发展。
摘要黑色素瘤是一种高度侵略性和威胁生命的皮肤癌形式,它占全球癌症与癌症相关的大部分。尽管传统的癌症疗法(例如手术切除,化学疗法和放射线)已被用来治疗恶性黑色素瘤,但由于耐药性和不良副作用的发展,它们的功效通常受到限制。因此,人们对为黑色素瘤开发替代治疗方案的兴趣越来越有效,毒性更少。萜烯是一组自然存在的植物起源化合物,由于它们能够抑制肿瘤生长并诱导癌细胞中凋亡的能力,因此已成为潜在的抗癌药。在这篇综述中,当前对萜烯的抗癌作用的理解(包括胸醌,β-链苯甲部,葡萄糖,香果酚,柠檬烯,α-丁烷,β-蛋白苯乙烯,钙含量,紫杉醇,紫杉醇,甲状腺素,β,β-β-β-β-β-β-β-β-β-β-β-β-β-β-苯甲酸,α-二碱,α-甲基甲基酸,尿素,脂肪含量,以及尿素,脂肪素,脂肪素,脂肪素,脂肪素,脂肪含量,脂肪素,脂肪素,脂肪素,脂肪素,脂肪素,脂肪素,脂肪含量,脂肪含量,脂肪含量,脂肪含量恶性黑色素瘤的治疗剂。