理解和影响与健康相关行为的框架。3个文化细微差别和行为变化模型构成了成功的公共卫生交流的基础,因为它们可以确定健康沟通策略的有效性。通过量身定制MES,以与不同的群体产生共鸣,干预措施可以引起更长的持久行为转变,这反过来又可以改善健康结果。文化量身定制的公共卫生运动可以通过解决社区的特定信念和实践来改善参与度。3根据文化特征分割公共卫生介入信息,增强其影响和相关性。3,4 AI领域的最近爆炸性增长为AI提供了巨大的潜力,可以简化和加快流程,使知识更容易获得并提高我们对世界的理解。在兽医医学中,AI已用于各种目的5,包括诊断成像6,7和临床文档。8 Generative AI可以创建针对不同识字级别,语言和地理位置的内容。9截至本文提交时,目前尚无关于使用生成AI来创建量身定制的AMR意识内容的研究。这项简短的非正式研究旨在探索生成AI的潜力,以不同语言的方式开发AMR消息传递通信,适合不同的受众。
在这篇综述中,对微生物中威胁生命的抗菌抗性发展的日益关注被概述。有几种不同类型的抗菌药物,包括抗生素,抗病毒药,抗真菌剂和抗寄生虫。抗生素是用于预防和治疗人类和动物以及植物的传染病的药物。耐药性的发展可能导致感染的无效治疗,从而导致疾病扩散,严重的疾病,残疾和死亡。我们面临着抗药性病原体的越来越多的威胁,这些病原体无法治疗并威胁执行挽救生命的干预措施,例如癌症化学疗法和剖腹产,髋关节置换和器官移植。由于抗生素耐药性的全球升高,常见的抗生素在治疗广泛的细菌感染方面变得无效。可能与治疗真菌感染有关,包括患有其他疾病的患者的药物之间的相互作用。对于所有这些,我们可以使用几种抗生素。在这篇综述中,总结了抗菌耐药性,抗性发展机制,抗生素类型,当前挑战和抗生素耐药性微生物的出现的简要概述。
随着越来越多的抗菌素耐药性被发现,全世界对新型抗菌素的需求正变得越来越迫切。为此,我们使用 Tiny Earth 模型从明尼苏达州湿地的土壤样本中识别、分离和鉴定潜在的新型抗菌素来源。Tiny Earth 项目是一个学生采购抗菌素发现社区,致力于发现潜在的新型抗菌素。该项目由明尼苏达州资源立法公民委员会 (LCCMR) 提供资金支持。当前的研究项目比较了三个连续学期的普通微生物学 (2021 年秋季、2022 年秋季和 2023 年秋季) 的结果。使用的培养基如下:营养物、10% 胰蛋白酶大豆、放线菌和甘油酵母提取物 (gyea)。以下被用作 ESKAPE 安全相关病原体:肠球菌、金黄色葡萄球菌、大肠杆菌、贝氏不动杆菌、恶臭假单胞菌和产气克雷伯氏菌。化学提取包括在琼脂平板上培养分离物,并使用乙酸乙酯提取要针对 ESKAPE 安全相关病原体进行测试的物质。该过程产生了从 2021 年秋季回收的 58 个分离物,其中 43 个分离物被发现是纯净的,其中 13 个对 ESKAPE 病原体表现出持续抑制作用。从 2022 年秋季样本中,有 34 个分离物表现出持续抑制作用,并且正在不断努力分离纯培养物。最后,在本秋季学期,我们初步回收了 75 种分离物,这些分离物显示出对安全相关病原体的抑制作用。我们将介绍正在进行的分离纯培养物和表征与观察到的抑制作用相关的化学物质的研究。我们还将介绍在该项目过程中获得的经验教训以及与湿地环境相关的未来药物发现机会。
蝴蝶豌豆花(Clitoria ternatea)是槲皮素的天然来源,槲皮素是一种具有各种生物学活性的类黄酮,包括抗氧化剂,抗炎症和抗菌特性。本研究旨在确定蝴蝶豌豆花提取物中的槲皮素水平,并测试其针对大肠杆菌和金黄色葡萄球菌的抗菌活性。使用HPLC方法在374 nm处使用HPLC方法的槲皮素分析显示,平均水平为42 ppm(4.2%w/w),方法验证包括精度,精度,线性性(𝑟2= 0.9959),LOD和LOD和LOQ分别为0.57 ppm和1.91 ppm。抗菌试验表明,蝴蝶豌豆花提取物分别抑制了大肠杆菌和金黄色葡萄球菌的生长,其抑制区最大,浓度分别为10.27±1.01 mm和12.28±0.09 mm的30%。该活性与槲皮素含量有关,槲皮素含量通过损坏细菌细胞壁和抑制生物膜形成等机制起作用。由于这种药理潜力,这些花可以作为药物和化妆品应用中的天然抗菌剂开发。©2025 SPC(SAMI Publishing Company),《亚洲绿色化学杂志》,用于非商业目的。
从微藻中提取的富含胞外多糖 (EPS) 的提取物具有广泛的生物活性,包括抗菌和抗真菌特性。然而,这些特性因微藻种类、所用的抗菌检测方法和所选的目标微生物而异。这项研究旨在调查从五种很少在此方面研究的微藻中获得的富含胞外多糖的提取物的抗菌特性。本研究选定的目标微生物包括革兰氏阳性菌 (枯草芽孢杆菌) 和革兰氏阴性菌 (铜绿假单胞菌)、真菌 (枝孢菌) 和微藻 (小球藻)。使用扩散测定法、肉汤微量稀释测定法和使用吸光度的生长测量来比较方法并充分评估抗菌特性。使用吸光度测量,对于至少一种富含 EPS 的微藻提取物,所有目标物种的生长率抑制率至少达到 80%。在 500 mgGlcEq · L − 1 的浓度下,枯草芽孢杆菌的活性提取物大部分来自莱茵衣藻(生长抑制率 87.1%)、普通念珠藻(53.7%)和多色紫球藻(46.4%)。发现莱茵衣藻(86.2%)、普通念珠藻(59.9%)和紫球藻(31.1%)的富含 EPS 的提取物对铜绿假单胞菌最有效。微绿球藻(86.0%)、莱茵衣藻(16.6%)和多色紫球藻(17.8%)的 EPS 提取物的抗真菌活性最高。结果表明,富含 EPS 的 N. commune 提取物(99.3%)、C. reinhardtii 提取物(84.8%)和 M. gaditana 提取物(84.1%)可抑制微藻生长。据我们所知,这项研究首次探索了富含 EPS 的微藻提取物的杀藻特性,为未来研究其潜在应用确定了有希望的候选物。
在本文中,我们在数值模拟中实施和研究一种基于模型的增强学习(MBRL)方法,称为自适应光学(PO4AO)的策略优化。我们使用面向对象的Python自适应光学(OOPAO)模拟工具来模拟Provence自适应光学元件金字塔运行系统(Papyrus)光学台,并提供系统的实时模型。尤其是我们证明了该方法的预测能力,因为时间误差主导了木瓜的误差预算。我们首先介绍了强化学习框架的详细描述,包括我们对状态空间,行动空间和奖励功能的定义。实验部分将PO4AO与在不同大气条件下调整良好的积分器进行了比较。总而言之,在将方法应用于实际望远镜和未来工作的可能途径之前,我们将讨论实验在数值模拟中的重要性。
fi g u r e 1脂质液滴:代谢,形态和组成。(a)主要代谢途径和中间代谢产物的简化方案参与LDS的生物发生和消耗。有关其他详细信息,请参见文本。fa,脂肪酸; FA-COA,酰基辅酶A; CPT1,肉碱棕榈转移酶I; CAC,柠檬酸周期; FASN,脂肪酸合酶; Oxphos,氧化磷酸化; ACC,乙酰辅酶A羧化酶; GPAT,甘油-3-磷酸酰基转移酶; AGPAT,1-酰基-SN-甘油-3-磷酸酰基转移酶; PAP,磷脂酸磷酸酶; DGAT,二甘油类酰基转移酶-1和-2; ACSL,酰基-COA合成酶; ATGL,脂肪甘油三酸酯脂肪酶; HSL,激素敏感脂肪酶; MAGL,单酰基甘油脂肪酶; NCEH,中性胆固醇酯水解酶。(b)内质网中发生的LD生物发生的示意图(ER)。酯化后,中性脂质积聚在ER双层中,形成透镜结构,该结构在ER双层内经过相位分离并成长为形成新生LD的细胞质。细胞质和ER蛋白被募集到LDS表面,促进其生长并萌芽到成熟的LDS中。附件蛋白在此过程中合作。在上面板(红色:TAG的化学结构)中说明了脂肪酸(FA)到三酰基甘油(TAG)中的酯化。(c)。用油酸处理肝HuH7细胞以诱导LD形成16小时(左图)。plin2(绿色)用特异性抗体定位,并用Lipidtox染色中性脂质。(n)表示细胞的核。箭头标记高放大倍数插图中的LD。THP-1细胞进行TEM分析(右图)。脂质液滴由它们的球形形态,相对较低的电子密度和通过单个磷脂单层界定。(d)代表LDS上主要蛋白质的简化方案。(e)该方案包含一些由病原体在宿主细胞中分泌的毒力因子操纵的LD蛋白(黑色)的例子(红色)(有关详细信息,请参见文本)。
1 有机化学实验室 LR17ES08,天然物质团队,斯法克斯大学科学学院,PB 1171,斯法克斯 3000,突尼斯;samet.sonda95@gmail.com(SS);amaniayachi21@gmail.com(AA);noureddineallouche@yahoo.fr(NA);raoudhajarraya@yahoo.fr(RM-J.)2 斯法克斯突尼斯大学斯法克斯生物技术中心微生物生物技术和酶工程实验室,Road of Sidi Mansour Km 6,PB 1177,斯法克斯 3018,突尼斯;mariamfourati@ymail.com(MF); lotfi.mallouli@cbs.mrt.tn (LM) 3 Equipe BTSB-EA 7417, Institut National Universitaire Jean-François Champollion, Université de Toulouse, Place de Verdun, 81012 Albi, France; michel.treilhou@univ-jfc.fr * 通讯:nathan.tene@univ-jfc.fr;电话:+33-667276471 † 这些作者对这项工作做出了同等贡献。
抗生素耐药性对公共卫生和药物开发构成重大威胁,主要原因是医疗和农业环境中抗生素的过度使用和滥用。随着细菌适应逃避现有药物,控制细菌感染变得越来越具有挑战性,导致疾病长期存在、医疗成本增加和死亡率上升。本综述探讨了抗生素在对抗感染中的关键作用以及使细菌能够抵抗抗生素的机制。讨论的主要抗生素包括香芹酚、达巴万星、喹诺酮类、氟喹诺酮类和佐利氟达星,每种抗生素对细菌病原体都有独特的作用。细菌已经进化出复杂的耐药策略,例如产生酶来中和药物、修改药物靶点以及使用外排泵去除抗生素,从而显著降低药物疗效。此外,本综述还研究了抗生素开发中的挑战,包括由于成本高和监管复杂性导致新药发现率下降。创新方法,例如基于结构的药物设计、联合疗法和新的给药系统,因其有可能创造具有增强对抗耐药菌株作用的化合物而受到关注。本评论为旨在对抗抗生素耐药性和推动开发强大的抗菌疗法以确保未来健康安全的研究人员和开发人员提供了宝贵的见解。