抗菌药物包括用于治疗或预防感染的抗生素,抗病毒药物,抗真菌药和抗寄生虫。对抗菌剂的抵抗是人类的一个问题,但也影响环境,植物和其他动物,包括用于食品生产的动物。一种健康3方法认识到人类,动物和环境的健康之间的相互作用和相互依存关系4。通过考虑使用一个健康镜头的AMR,可以确定新的解决方案,以在全球范围内解决AMR,并解决跨多个领域的实践和过程,从而阻碍了可持续使用抗菌药物。这可能包括改善医疗保健系统和生活水平
摘要。精油(EOS)源自植物,表现出多种生物学活性,包括抗病毒药,抗癌和抗菌作用。本综述对其化学成分和生物学特性进行了彻底的检查,这对于药物,医疗和农业应用至关重要。EOS对各种细菌和真菌(包括抗药性菌株)表现出有效的抗菌作用,并表现出对流感,疱疹和HIV的有希望的抗病毒活性。此外,它们显示出作为抗癌剂的潜力,诱导细胞凋亡和抑制细胞增殖。尽管有好处,但诸如低溶解度和稳定性之类的挑战限制了它们的使用。诸如纳米塑料之类的创新策略旨在增强其功效。关键词:生物活性,抗菌剂,精油,抗癌活性。
工业中的“灰尘”颗粒 - 污染物或商品:在微电子工业中,化学活性等离子体用于进行等离子蚀刻,以形成数百万个微观电路元件(例如晶体管),这些元件是所有现代电子产品的核心。这些条件与灰尘在等离子体中形成的条件完全相同!由于现代微电子使用的电路元件通常小于 10 纳米,因此这种大小的灰尘颗粒很容易损坏和污染加工后的芯片。然而,灰尘颗粒不仅仅是一种滋扰,它们可能是一种重要的商品。例如,纳米颗粒嵌入太阳能电池中以提高光收集效率,可用作抗菌剂,甚至用于改进计算机内存。1,2
抗生素是我们最重要的药物类别之一,如果使用得当,可以挽救许多生命并保障粮食生产。然而,抗生素的使用增加会导致耐药性的增加。如果抗生素使用不当,例如在不需要时使用、剂量不适当,或者使用抗菌谱过广的抗生素,都会不必要地促进耐药性的产生。因此,重要的是抗生素和其他抗菌剂只在有益时使用,使用正确类型的抗生素,并制定、及时更新和遵循治疗建议。为了减少耐药性的增长,在畜牧业中也必须负责任地使用抗生素。瑞典农业委员会的法规管理着对人类治疗特别重要的药物在动物身上的使用。
这次区域会议将解决当前的所有微生物问题,并提供该领域世界一流专家克服这些问题的解决方案。微生物对抗菌药物的抗性正在引起兽医和人类医学中的主要问题,因此需要改善疫苗和发现新药,但也需要替代治疗模型。增长的抗菌耐药性,尤其是与生物膜相关的抗菌素,需要采取替代措施来生物防治在各种环境中微生物的传播。这些会话将讨论常见抗菌剂的可能替代方法,这些抗微生物的应用与噬菌体应用不同,新的天然化合物生物技术或纳米技术以及生物控制,
摘要:在减轻人类病原体伤害的最新努力中,许多生物合成途径已被广泛评估,以抑制病原体生长和确定药物靶标的能力。这种途径的重要产物/靶标之一是等二磷酸。异戊烯基双磷酸是类异型的通用前体,这对于微生物的正常功能至关重要。通常,两种生物合成途径导致异端二磷酸盐的形成:(1)动物中的甲丙酸途径; (2)许多细菌中的非甲酸盐或甲基疫霉素(MEP)以及一些原生动物和植物。由于在哺乳动物细胞中找不到MEP途径,因此它被认为是针对各种人类病原体(包括结核分枝杆菌(M.TB))开发抗菌剂的有吸引力的靶标。在MEP途径中,4-二磷酸2-C-C-甲基-D-雄性激酶(ISPE)磷酸化4-二羟基丁基-2-C-C-甲基-D-鞭毛醇(CDPME)以形成4-二羟基tididyl- 2-甲基 - 2-甲基 - 2-甲基 - 二甲基2-哲学2-磷酸2-磷酸盐(CDP)。通过对接ISPE蛋白进行了针对1500万种化合物的虚拟高通量筛选。我们鉴定出一种活性异位化合物,该化合物显示出酶促活性。也就是说,针对M.TB ISPE的6 µg/ml的IC 50和M.TB(H37RV)的MIC为12 µg/ml。因此,我们设计和合成了类似的新型异构菌化化合物,并将它们针对分枝杆菌进行了测试,观察到5 µg/ml的MIC针对M. Avium。这项研究将为开发针对病原体中MEP途径的新型抗菌剂提供必要的关键见解。
与感染相关的疾病每年导致超过1000万人死亡,其中很大一部分与细菌病原体有关。细菌病原体中的抗菌抗性(AMR)限制了当前治疗的有效性。AMR的主要贡献者是过度使用抗菌消毒剂,该抗菌消毒剂在COVID-19大流行期间得到了增强。当过度使用或处置不当时,这些代理可以进入环境,特别是供水系统。在这项研究中,我们进行了每月的水监测,以确定史长河中存在的细菌水平和物种,以及使用氯,过氧化物,Quaternary铵化合物(QAC)和peracetic酸试验条的抗菌剂水平。此后,我们在这些抗菌剂存在下以OD600分光光度计为以各种浓度的情况下测试了河流中选定的革兰氏阴性细菌的生长动力学。已经对2023年9月从史典河分离的鲍曼尼杆菌进行了初步测试。baumannii以151.52 mg/l漂白剂(氯),39.59 mg/l过氧化氢,2.20 mg/l氯化三甲基铵(QAC)(QAC)(QAC)和32.91 mg/l乙酸在任何测试的Alkylym inkyllyment(QAC)中生长(QAC),。浓度。 基于这些结果,我们计划使用从河流中分离出来的河流,期间,期间和之后的河流进行进一步测试。。浓度。基于这些结果,我们计划使用从河流中分离出来的河流,期间,期间和之后的河流进行进一步测试。如果在化学消毒剂的有效性和相对于Covid-19大流行中收集的化学消毒剂的有效性之间存在相关性,这将证明对AMR的持续研究以及重新评估使用常见化学消毒剂的使用是合理的。
抗菌耐药性(AMR)是对人,动物和环境健康的主要全球威胁,它正在不断发展。应归咎于多药(MDR)细菌的发展,传播和持久性,也称为“超级细菌”。抗菌剂的有效性受到耐受性或抵抗力从首次使用的潜力而损害。用于治疗细菌,真菌,病毒和寄生虫感染的抗菌剂属于此类。随着这种耐药的增长,几种生理和生化过程可能会发挥作用。在人类历史上的关键时刻发现了抗生素,彻底改变了医学并挽救了无数的生命。可悲的是,这种“魔术子弹”之后是对它们产生抗药性的病原体。尽管在过去几十年中采取了几项建议和措施,但环境并没有跟上微生物越来越对可用药物的免疫力,这种现象称为抗菌耐药性(AMR)。鉴于AMR危机的幅度以及受其影响影响的众多社会领域,该问题的解决方案必须是全面和系统的。 在这一点上,不可能确定预测未来的情况,但是由于新型抗生素的稀缺性,AMR的调节似乎非常困难。 要解决此问题,应使用多方面的策略。 医学生,医生和药剂师必须接受持续和更新的培训。 除非迅速解决AMR,否则可能会丢失。鉴于AMR危机的幅度以及受其影响影响的众多社会领域,该问题的解决方案必须是全面和系统的。在这一点上,不可能确定预测未来的情况,但是由于新型抗生素的稀缺性,AMR的调节似乎非常困难。要解决此问题,应使用多方面的策略。医学生,医生和药剂师必须接受持续和更新的培训。可能会丢失。必须将研究的一个组成部分纳入AMR政策,以及制药行业的鼓励生产“超级细菌抗生素”。
对于参与研究和发现针对这些病原体的新型且更有效的抗菌剂,革兰氏阳性病原体细菌中的多药耐药性是与研究和发现新的且更有效的抗菌剂有关的科学界最为明显的挑战之一。Linezolid, an oxazolidinone antibiotic, is effective for the treatment of infections caused by Gram- positive pathogens resistant to other antibiotics including methicillin-resistant S. aureus (MRSA), vancomycin-resistant enterococci (VRE), and penicillin-resistant Streptococcus pneumoniae [ 1 ].良好的药代动力学和有毒作用利录,与人类口服或静脉内给药一致,代表了显着特征,这些特征使Linezolid成为巨大成功的抗生素[2],也显示出适合降低耐药性发生的几种特征。的确,LineZolid是一种完全合成的药物。因此,没有预期的自然且预先存在的抗性基因可以缓解耐药机制的出现。此外,它具有独特的作用机理,该机制在非常早的阶段靶向细菌蛋白质的合成[3],因此,药物和商业上可用的抗菌药物之间的交叉耐药性将是遥远的。在任何情况下,抗二唑酚耐药细菌的识别[4]已经强调了需要绕开耐药性的不同靶标的新的恶唑烷酮型药物。正在进行结构变化和改进特征的新的恶唑烷酮研究,研究领域非常活跃[5]。在本文中,我们描述了这些linezolid类似物之一,称为10f。在先前的论文[6]中,我们描述了在C-5位置具有尿素和硫库功能的未报告的线索酚类似物的设计,合成和初步抗菌活性。了解这种类似物的作用机理,产生了金黄色葡萄球菌的抗性突变体。