Microchip 提出了一种独特的可扩展方法。例如,“COTS 到抗辐射”设备是原始 COTS 设计的一个版本,其中包括辐射改进,以在太空中提供完全的闩锁免疫力。这些设备最初并不是为这种环境设计的,但选择实现 20Krad 到 50Krad 的辐射耐受性,然后采用陶瓷(在 QML 等效流程下)或塑料(在高可靠性质量流程下)封装,以有限的成本提供最佳的资格水平和完全的可追溯性。第二种选择甚至可以扩展到将 COTS 转换为抗辐射设备。组件供应商可以重复使用先进的 COTS 架构和成熟的设计来创建抗辐射解决方案,以较低的 SEU 错误率达到 >100 Krad 的辐射免疫力。通过这种 COTS 升级方法,RT 和 RHBD 设备都成为与初始 COTS 设备相同的设备生态系统的一部分。
易失性存储器....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................8 时钟.................... ... 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 . ... 9 交叉点开关. ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... . ... .9 串行通信 SpaceWire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...9
扩散式卫星星座为导弹发射检测、低信噪比 (SNR) 红外搜索与跟踪 (IRST) 以及空间域感知提供了极具吸引力的解决方案。与将资产置于地球静止轨道 (GEO) 相比,低地球轨道/中地球轨道 (LEO/MEO) 的 Delta-V 较低,地面和大气分辨率以及可实现的 SNR 更高,并且技术更新可以更容易地完成。此外,分散式星座能够更好地吸收单个资产的损失,而不会遭受相应的系统能力损失,尤其是在采用平台网络和冗余时。部署多达数百颗卫星的星座的一个主要考虑因素是,与它们要取代的少数 GEO 资产相比,它们的实施必须在不大幅增加成本的情况下完成。此外,部署必须在短时间内(而不是几十年)完成才能实现运营效率,因此实现高制造率的能力至关重要。最后,虽然卫星平台、通信系统和处理的价格已经下降,但传统使用的红外传感器的价格却没有下降。
摘要:在航空航天环境中,芯片的高可靠性和低功耗至关重要。为了大幅降低功耗,芯片的锁存器需要进入掉电操作。在此操作中,采用非易失性(NV)锁存器可以保留电路状态。此外,在航空航天环境中,锁存器可能会被辐射粒子击中,在最坏的情况下会导致严重的软错误。本文提出了一种基于电阻式随机存取存储器(ReRAM)的NV锁存器,用于NV和鲁棒应用。所提出的NV锁存器具有低开销的抗辐射能力,并且可以在掉电操作后恢复值。仿真结果表明,所提出的NV锁存器可以完全提供针对单粒子翻转(SEU)的抗辐射能力,并可以在掉电操作后恢复值。与其他类似解决方案相比,所提出的NV锁存器可以将存储单元中的晶体管数量平均减少50%。
本报告是由美国政府某个机构资助的工作报告。美国政府、其任何机构及其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,或承担任何法律责任或义务,亦不保证其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定的商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或偏爱。本文表达的作者的观点和意见不一定表明或反映美国政府或其任何机构的观点和意见。
与过去的技术节点相比,器件的缩小可能会导致常规(未硬化)六晶体管 (6T) SRAM 单元的 SEU 敏感度增加 [8]。尽管 SEU 是一种非破坏性事件,但 SEU 概率的增加可能会对更大规模 SRAM 器件的使用造成越来越大的问题。这在使用高性能数字信号处理器的商用现货产品、太空任务和核电反应堆中尤其如此。由于多个位翻转可能导致同一个字中出现多个错误,因此这是一个更大的问题 [9]。在本文提出的设计中,标准 SRAM 单元经过辐射硬化处理,以减轻 SEU 和 DEU。TICE 存储单元可以自我纠正最多两个同时发生的翻转。为了进一步提高整体可靠性,我们应用布局技术将关键节点尽可能地放置在 TICE 存储单元中。在假设三个同时发生的翻转很少见的情况下,这降低了关键节点同时被击中的可能性。与标准 8T 存储单元和 DICE 存储单元相比,本研究提出的存储单元具有更高的耐辐射性。
摘要 Global Foundries 的 22FDX 技术是一种商业化的尖端集成电路制造工艺。该工艺结合了 22 nm 的典型最小栅极长度和 FD-SOI(全耗尽绝缘体上硅)多层结构。这些技术特性允许自适应体偏置、超低电压供电和超低泄漏,从电路应用的角度来看,这些特性有利于节能的射频信号传输、高性能计算和强大的 MRAM(磁阻随机存取存储器)。因此,该技术非常适合克服当前用于高速和低功耗 AMS(模拟和混合信号)应用的产品解决方案。特别是,SOI 技术特性可确保免受单粒子闩锁的影响。
上一代太空级 FPGA 的制造工艺采用了更大的结构几何形状,专注于缓解单粒子翻转 (SEU),并采用了三倍寄存器和双互锁存储单元等强化方法。该工艺的一个优点是,更大的寄生布线电容本质上可以过滤辐射环境中固有的单粒子瞬变 (SET)。最新一代 FPGA 具有更高的逻辑密度和更小的互连。因此,由于太空中离子的电荷量影响敏感节点的可能性增加,SET 可能成为主要的单粒子效应 (SEE)。
BAE Systems 是一家全球性国防、安全和航空航天公司,为空军、陆军和海军提供全系列产品和服务,以及先进的电子、信息技术解决方案和客户支持服务。该公司开发和生产各种抗辐射太空产品,从标准组件和单板计算机到完整的系统有效载荷。BAE Systems 专注于广泛的抗辐射电子产品领域,包括专用集成电路 (ASIC)、专用标准产品 (ASSP)、微处理器、存储器、现场可编程门阵列 (FPGA) 和单板计算机。BAE Systems 的太空计算机在太空中拥有 1,000 多台计算机,包括 16 位 GVSC1750、32 位 RAD6000 ® CPU 和 RAD750 ® 系列产品,已在轨道上运行了 10,000 多年。位于弗吉尼亚州马纳萨斯的太空产品和处理部门自 20 世纪 80 年代初以来一直为商业、军事和太空界提供产品和系统级解决方案。我们最新的 Power Architecture ® 计算机产品系列基于 32/64 位 e5500 处理器核心的抗辐射版本,包括基于单核和多核的单板计算机,例如 RAD5545 ® SBC。
摘要:ATLAS 和 CMS 实验预测高亮度大型强子对撞机(HL-LHC)最内层像素探测器的辐射注量高达 1 × 10 16 1 MeV n eq /cm 2。辐射剂量的增加将导致探测器性能下降,例如漏电流和完全耗尽电压增加,信号和电荷收集效率降低,这意味着有必要开发用于甚高亮度对撞机的抗辐射半导体器件。在我们前期对超快三维沟槽电极硅探测器的研究中,通过模拟不同最小电离粒子(MIP)撞击位置下的感应瞬态电流,验证了从 30 ps 到 140 ps 的超快响应时间。本工作将利用专业软件有限元技术计算机辅助设计(TCAD)软件框架,模拟计算探测器在不同辐射剂量下的全耗尽电压、击穿电压、漏电流、电容、加权场和MIP感应瞬态电流(信号)。通过分析模拟结果,可以预测探测器在重辐射环境下的性能。像素探测器的制作将在中国科学院微电子研究所的CMOS工艺平台上进行,采用超纯高电阻率(高达10 4 ohm·cm)硅材料。
