• 借助工艺模拟和测试结构的生产,开发 IHP BiCMOS 技术的设备和功能模块 - 进一步开发基于结隔离的 IHP 独特的抗辐射设备,例如 RF-LDMOS - 硬件安全领域概念的技术实现,例如防止光侧信道攻击 • 开发和优化设备和模块制造的工艺流程 • 设计简单的评估电路,最好使用开源工具,例如 klayout • 控制和监控设备和模块特性 • 通过集成到工艺设计套件 (PDK) 中,支持将开发的设备转移到工业和学术应用中 • 准备技术文档和展示研究成果 • 参与研究项目的收购和执行
“抗辐射”技术用于太空应用设备,在全球范围内备受追捧。SCL 还开展了多项技术开发计划,例如用于高频/性能的 Si-Ge 技术、用于高压的 LDMOS 技术、扩大光电设备技术以进入红外成像、可见光和热图像传感器等新领域、用于太空硬件和其他类似应用的 CMOS-MEMS 集成和先进传感器。SCL 目前还在为 HEMT 设备引进 GaN-on-Si 技术,从而增强 SCL 的高功率/电压应用产品组合。可参阅 SCL 官方网站 (www.scl.gov.in) 查看包含前几财年运营、组织和财务详情的年度报告。
• 认证库存(基于模拟和实验的年度三实验室主任信函) • 维持库存(与核心监视协调创建新的诊断和材料分析) • 现代化库存(组件的技术成熟度,管理武器代码,针对当前和未来需求的敌对和交付环境平台,物理鉴定的水电/亚标准) • 现代化生产(面向制造计划的设计,贫铀,钚和非核组件工艺鉴定,抗辐射微电子和高爆炸弹的共享任务) • 为未来做好准备(学术计划,IC / DoD 参与,战略愿景和基础设施规划)
今年对我们技术人员最令人兴奋的投资可能是 GNC 学院的扩建。德雷珀拥有美国航天、导弹系统和其他关键任务飞行器的制导、导航和控制 (GNC) 领域的顶尖专家。GNC 学院将知识从我们经验丰富的员工转移到那些负责确保载人和自动驾驶飞行器和系统能够在未来几十年内到达国家需要的地方的人。今年,45 名员工完成了该计划,包括一门新的抗辐射技术设计课程——这是德雷珀独特的专业技能,服务于我们国家当前和未来的战略系统。
计算对于太空任务的成功至关重要。未来任务的复杂性不断增加,对自主性的需求也越来越大,因此需要开发下一代处理器。这些处理器必须具备增强的计算能力、AI 功能、高速连接和先进的安全措施。Microchip 的 PIC64 高性能航天计算 (PIC64-HPSC) 微处理器的推出标志着太空计算的变革性进步。这些抗辐射和容错 MPU 具有八个针对 AI 和机器学习任务优化的 RISC-V 64 位内核、与 TSN 以太网和 PCIe 接口的高速连接以及用于高级安全性的后量子加密。PIC64-HPSC 预示着太空探索和商业太空事业高性能计算的新时代的到来。
Rodney Chambers 先生表现出了卓越的领导能力,为 MIL-PRF-38535《集成电路(微电路)制造通用规范》中军事和太空应用的新型 P 类塑料封装微电路 (PEM) 的开发和添加做出了重大贡献。具有抗辐射能力保证的新型 P 类设备将允许原始设备制造商 (OEM) 使用之前未在 MIL-PRF-38535 中记录的最先进的 PEM 产品。因此,P 类设备将比陶瓷密封设备更小、更轻、更具成本效益,并将允许空军、太空部队和 NASA 卫星计划开发最高质量的军事武器和太空系统平台,从而确保任务成功。
Sandia 的 CMOS7 技术是一种战略性抗辐射、3.3 伏、350 纳米、绝缘体上硅 (SOI) CMOS 工艺,适用于定制、高可靠性数字、模拟和混合信号 ASIC。CMOS7 是一种具有 5 个金属层的 24 掩模级工艺。模拟和混合信号应用的选项包括金属-绝缘体-金属 (MIM) 电容器和 N+ 多晶硅电阻器。Sandia 使用 350 纳米几何结构来优化模拟电路的性能,从而实现比小几何设备更好的设备匹配、更高的电源电压、更低的泄漏和更宽的信号动态范围。经过适当设计和制造,较大的设备在温度波动、冲击和辐射的扩展操作环境中可以更加坚固耐用。
Sandia 的 CMOS7 技术是一种战略性抗辐射、3.3 伏、350 纳米、绝缘体上硅 (SOI) CMOS 工艺,适用于定制、高可靠性数字、模拟和混合信号 ASIC。CMOS7 是一种具有 5 个金属层的 24 掩模级工艺。模拟和混合信号应用的选项包括金属-绝缘体-金属 (MIM) 电容器和 N+ 多晶硅电阻器。Sandia 使用 350 纳米几何结构来优化模拟电路的性能,从而实现比小几何器件更好的器件匹配、更高的电源电压、更低的泄漏和更宽的信号动态范围。经过适当设计和制造,较大的器件在温度波动、冲击和辐射的扩展操作环境中可以更坚固耐用。