注意:请注意,此文档可能不是记录的版本(即已发布的版本)。作者手稿版本(作为同行评审或同行评审后接受的出版物接受的子手稿版本)可以通过出现出版商品牌和/或排便中的出现来确定。如果有任何疑问,请参考已发布的来源。
背景:肝细胞癌(HCC)是癌症相关死亡的主要原因之一。Sorafenib是该疾病的一线疗法,与降低的治疗功效有关,可以通过与selumetinib结合来克服这种疗效。在这种情况下,这项工作的主要目标是开发一个新的纳米系统,该系统由含有靶向配体GalNAC的脂质双层涂层的聚合物核心组成,以专门有效地将两种药物分配到HCC细胞中,以显着提高其治疗效率。方法:混合纳米系统(HNP)的物理化学表征及其成分是通过动态光散射,ZETA电位,基质辅助激光解吸电离的电离 - 飞行质量光谱的时间 - 飞行质量光谱的时间和透射电子微观。细胞结合,摄取和HNP的特异性通过流式细胞和共聚焦显微镜评估。通过Alamar Blue Assay评估了治疗活性:通过:细胞活力;使用FITC-ANNEXIN V通过流式细胞术进行细胞死亡;胱天蛋白酶活性通过发光;通过流式细胞仪的线粒体膜电位;通过蛋白质印迹和分子靶水平。结果:获得的数据表明,这些混合纳米系统具有两种药物的较高稳定性和载荷能力,以及合适的理化特性,即在大小和表面电荷方面。此外,生成的制剂允许绕过耐药性并具有高特异性,从而促进了HCC细胞中的大细胞死亡水平,但不能在非肿瘤细胞中。通过增加的编程细胞死亡来实现共同载体药物的抗肿瘤作用的增强,这与线粒体膜电位的强烈降低相关,caspase 3/7和caspase 9的活性显着增加,并大量增加附属蛋白V-v-p-p-p-p-p-py-py-py-PORSISTIS的细胞。结论:开发的配方产生了较高且协同的抗肿瘤作用,揭示了改善针对HCC治疗方法的转化潜力。关键字:肝细胞癌,混合纳米系统,药物输送,Galnac,Sorafenib,Selumetinib
我们研究了限制具有金属/铁电/夹层/Si (MFIS) 栅极堆栈结构的 n 型铁电场效应晶体管 (FeFET) 耐久性的电荷捕获现象。为了探索电荷捕获效应导致耐久性失效的物理机制,我们首先建立一个模型来模拟 n 型 Si FeFET 中的电子捕获行为。该模型基于量子力学电子隧穿理论。然后,我们使用脉冲 I d - V g 方法来测量 FeFET 上升沿和下降沿之间的阈值电压偏移。我们的模型很好地符合实验数据。通过将模型与实验数据拟合,我们得到以下结论。(i)在正工作脉冲期间,Si 衬底中的电子主要通过非弹性陷阱辅助隧穿被捕获在 FeFET 栅极堆栈的铁电 (FE) 层和夹层 (IL) 之间的界面处。 (ii) 基于我们的模型,我们可以得到在正操作脉冲期间被捕获到栅极堆栈中的电子数量。 (iii) 该模型可用于评估陷阱参数,这将有助于我们进一步了解 FeFET 的疲劳机制。
1 DARBY儿童研究所,南卡罗来纳州医科大学,美国南卡罗来纳州查尔斯顿,美国2个儿科系,南卡罗来纳州医科大学,南卡罗来纳州查尔斯顿,美国南卡罗来纳州,美国3号生物化学和分子生物学和分子生物学和霍尔林斯霍尔林斯科学系 Lomonosov莫斯科州立大学,俄罗斯,俄罗斯,5化学和物理科学系,戴森艺术与科学学院,纽约州普莱斯维尔,纽约州Pleastville,6个生物学和生物技术学院,俄罗斯莫斯科,俄罗斯莫斯科,俄罗斯莫斯科,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,高等教育学院6,生物学和生物技术学院6俄罗斯莫斯科科学院,南卡罗来纳州医科大学神经科学系8,美国南卡罗来纳州查尔斯顿,美国南卡罗来纳州医科大学9号药物发现系1 DARBY儿童研究所,南卡罗来纳州医科大学,美国南卡罗来纳州查尔斯顿,美国2个儿科系,南卡罗来纳州医科大学,南卡罗来纳州查尔斯顿,美国南卡罗来纳州,美国3号生物化学和分子生物学和分子生物学和霍尔林斯霍尔林斯科学系Lomonosov莫斯科州立大学,俄罗斯,俄罗斯,5化学和物理科学系,戴森艺术与科学学院,纽约州普莱斯维尔,纽约州Pleastville,6个生物学和生物技术学院,俄罗斯莫斯科,俄罗斯莫斯科,俄罗斯莫斯科,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,俄罗斯,高等教育学院6,生物学和生物技术学院6俄罗斯莫斯科科学院,南卡罗来纳州医科大学神经科学系8,美国南卡罗来纳州查尔斯顿,美国南卡罗来纳州医科大学9号药物发现系
©作者2025。Open Access本文在创意共享属性下获得许可 - 非商业 - 非洲毒素4.0国际许可证,该许可允许以任何中等或格式的任何非商业用途,共享,分发和复制,只要您与原始作者提供适当的信誉,并为您提供了符合创造性共识许可的链接,并提供了持有货物的启动材料。您没有根据本许可证的许可来共享本文或部分内容的适用材料。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/。
摘要 - 已经回顾了抗铁磁纳米结构中木元的激发,检测和传播的理论和实验研究。抗铁磁材料的特性,例如不存在宏观磁化,存在强交换相互作用以及复杂的磁晶体结构,使实施新型的内存和功能电子设备使得有可能。微观和纳米级的抗铁磁材料中可能的镁效应的研究需要新的实验和理论方法。在这篇综述中,描述并系统化了磁振荡激发的最新结果 - 磁磁性的抗铁磁材料。提出了抗铁磁铁和多层抗磁性异质结构的主要理论结果。模型用于描述包括纳米层结构中电流和光脉冲引起的现象,包括抗铁磁体。通过布里鲁因散射研究抗铁磁微体和纳米结构的方法,以及抗铁磁性纺纱型和镁质的应用的前景。
多酚代谢物在芳族环上具有几个羟基。类黄酮是具有多种治疗作用的多酚的主要自然基团。theaflavin及其衍生物(曲夫蛋白3-食道,theaflavin 3,3'-二瓜和theaflavin 3'-gallate)作为红茶的主要多酚之一,表现出令人鼓舞的抗癌,抗炎,抗炎性,抗生素,抗毒剂和抗神经脱发的活性。这种生物活性化合物具有减轻冠心病的潜在能力,并对骨矿物质密度产生愈合影响。癌细胞和细菌中耐药性的出现导致更多的努力找到了新型有效的抗癌和抗菌剂。此外,最近的研究旨在减少与化学疗法和抗菌剂有关的严重副作用。对于神经退行性疾病,例如阿尔茨海默氏症,多发性硬化症和帕金森氏症,当前昂贵的药物的低效率是治疗这些疾病的主要问题。在这方面,发现和设计新的抗神经退行性药物是可分配的。
引用:Jimba RA,Ogbu JC,Agarry OO,Donas Nonso W,Odunsanya OO(2024)与牛肉中异构体的金黄色葡萄球菌的分离,鉴定和抗抗体图。J Med Case Rep案例系列5(12):
•这种恐惧,不确定性和怀疑(FUD)背后的基础围绕量子计算机对现有数据的未来威胁进行了围绕。通常被称为“现在的收获”,以后解密(HNDL),该理论以担忧,即民族国家将访问当前加密的数据,然后使用量子计算机在以后的时间进行解密。
