CS/CS/SB 770 大幅修订了现行法律授权的一项计划,通常称为“财产评估清洁能源”或“PACE”计划,该计划允许业主对不动产进行符合条件的改进,并通过年度非从价税评估来融资。符合条件的改进包括提高能源效率、可再生能源、抗风能力以及法案新增的废水处理、洪水和水损害缓解以及可持续建筑改进。该法案加强了对签订 PACE 合同的消费者的某些保护,以及对安装改进的承包商的监督。该法案扩大了可以利用这笔资金安装的改进范围。该法案更新了 PACE 法规的立法意图,以反映该计划的扩大范围,并引入了用于澄清法规措辞的定义。该法案不影响州或地方收入。该法案于 2024 年 7 月 1 日生效。
精确空投是一种技术,其所需能力变得更加精确,因为战斗情况需要更高的精确度。弹道和翼伞型运载工具没有能力在城市战斗情况下持续向特定屋顶投送有效载荷。滑翔自转旋翼机运载平台已被研究作为实现更高空投性能的手段。自转旋翼机具有与翼伞相似的滑翔特性,但具有更好的抗风能力和控制能力。已经构建了基于动量和叶片元素直升机理论的初步模拟。已经开发了一种使用多环闭合策略的经典控制器,该控制器使用新的非线性制导律来遵循由考虑初始条件的算法生成的路径。扩展卡尔曼滤波器用于状态估计。模拟结果显示一致的精度约为 5 英尺,最终位置误差很少超过 10 英尺。
垂直起降(VTOL)是无人机(UAV)的基本功能。VTOL一方面可以拓展和增强无人机的应用领域,但另一方面也使得无人机控制系统的设计更加复杂。控制系统设计中最具挑战性的需求是实现固定翼无人机对控制指令满意的响应敏锐度以及确保飞机模态通道有效解耦。本文在气动分析的基础上,建立了含有力和力矩的六自由度(6-DoF)模型,并通过计算流体力学(CFD)数值模拟进行气动分析。提出一种基于扩张状态观测器(ESO)的改进比例微分(PD)控制器来设计内环姿态控制,增强了无人机系统对内外部不确定性的抗干扰能力。建立无人机运动方程,将运动方程分解为纵向和横侧两个独立运动分量,设计小扰动条件下的外环控制律;提出一种纵向高度通道总能量控制系统(TECS),将速度控制与航迹控制分离;横侧轨迹跟踪采用L1非线性路径跟踪制导算法,提高曲线跟踪能力和抗风能力。实飞实验数据证明了该方法的有效性。最后,设计了一种控制律。