摘要i-motifs(IMS)是在富含细胞质的DNA序列中形成的次级str uct uct uct,在基因组中的多个功能中均在v olv中。尽管Putativ e Im forming序列被广泛分布在人类基因组中,但推定的IMS的折叠状态和强度变化了。muc h先前的研究IM已重点是使用生物含量xperiments评估IM折叠特性。ho w e v er,没有专门的计算工具来预测IM结构的折叠状态和强度。在这里,我们介绍了一条机器学习管道,即IM-Weeker,以预测DNA IMS的折叠状态和结构性折叠状态。该程序Im-seeker结合了一个平衡的随机森林分类器,该森林分类器在全基因组IMAB抗体基于基于IMAB的剪切和标记测序数据中训练,以预测折叠状态和极端的梯度增强回归器,以根据文献生物物理数据和我们的内部生物物理实验来估算折叠强度。im-seeker以81%的分类精度预测DNA IM F旧状态,并在测试集上以0.642的确定系数(R 2)估算了F旧强度。模型的解释证实,富含C的序列的核苷酸组成显着影响Im stabilit Y,与含有胞嘧啶和胸腺氨酸的序列具有正相关,并且与鸟嘌呤和腺嘌呤的负相关。
正确折叠的蛋白对于几乎所有细胞过程至关重要,包括酶催化,信号转导和结构支持。细胞已经发展出复杂的控制机制,例如伴侣和蛋白质抗体网络的帮助,以确保蛋白质正确地成熟并正确折叠并保持其功能构象。在这里,我们回顾了控制关键激素调节剂或葡萄糖稳态折叠的机制。胰腺β细胞中的胰岛素合成始于前胰岛素的产生。在翻译过程中,胰岛素前体涉及内质网(ER)易位机制的成分,这对于预胰岛素信号肽的适当定向,易位和裂解至关重要。这些步骤对于启动Proinsulin的正确折叠至关重要。Proinsulin的可折叠性在ER中进行了优化,该环境旨在支持折叠过程和拆卸债券的形成,同时最大程度地减少错误折叠。这种环境与ER应力反应途径无关,这对胰腺β细胞具有有益的和潜在的有害作用。促硫素的折叠折叠可能导致过多的生物合成载荷,促硫素基因突变或影响ER折叠环境的遗传易感性。错误折叠的促硫蛋白会导致有效的胰岛素产生,并导致糖尿病发病机理。了解蛋白质折叠的机制对于解决糖尿病和其他蛋白质错误折叠的疾病至关重要。
分子进化的长期追求之一是能够直接从生物体的基因型预测其适应性。有了这种预测能力,研究人员将能够更准确地预测生物体将如何进化以及如何设计具有新功能的蛋白质,从而带来医学和生物技术的革命性进步。在这项工作中,我们汇集了已报道的最大一组实验性 TEM-1 β-内酰胺酶折叠自由能,并将这些数据与之前获得的适应性数据和计算自由能预测结合起来,以确定 β-内酰胺酶的适应性有多少可以通过热力学折叠和结合自由能直接预测。我们专注于 β-内酰胺酶,因为它作为模型酶已有悠久历史,并且在抗生素耐药性中发挥着核心作用。基于一组 21 个专门设计用于影响蛋白质折叠的 β-内酰胺酶单突变体和双突变体,我们首先证明,用于计算折叠自由能的建模软件(例如 FoldX 和 PyRosetta)可以有意义地(尽管不是完美地)预测单突变体的实验折叠自由能。有趣的是,虽然这些技术也能产生合理的双突变体自由能,但我们表明它们这样做是出于错误的物理原因。然后,我们继续评估实验和计算折叠自由能对单突变体适应性的解释程度。我们发现,根据线性模型,折叠自由能最多可解释 β-内酰胺酶适应性值方差的 24%,而且,有点令人惊讶的是,用计算预测的活性位点附近残基的结合自由能补充折叠自由能只会使折叠数字增加几个百分点。这强烈表明,β-内酰胺酶的适应性大部分由自由能以外的因素控制。总体而言,我们的研究结果揭示了
抽象新合成的蛋白质是从核糖体出口隧道中涌现出来的未折叠多肽。将这些新生的链折叠成天然构象,对于蛋白质功能和防止行驶的相互作用至关重要,从而触发错误折叠和危害蛋白质组稳定性。但是,实现正确的3D结构是暴露于细胞质中高浓度分子的新生链的主要挑战。一般与核糖体相关的伴侣有助于各种新生肽的共转折叠。目前尚不清楚该“单尺寸合适”系统是否确保具有挑战性折叠路径的蛋白质表达,还是专门与核糖体相关的伴侣管理此类苛刻客户的折叠。在研究I中,我们研究了HSP70伴侣如何调节HSF1,这是一种转录因子,介导细胞对蛋白毒性应激的反应。我们证明了HSP70直接与HSF1结合,使其在非压力条件下保持潜在状态。蛋白质错误折叠,特别是新合成的蛋白质,将HSP70滴定,激活HSF1并诱导应力反应。因此,响应错误折叠蛋白的HSP70可用性是HSF1活性的关键调节机制。在研究II中,我们确定了一种专业的核糖体相关伴侣CHP1,该伴侣CHP1有助于EEF1A的共同折叠,这是一种高度丰富的多域GTPase,对于mRNA转化至蛋白质至关重要。删除CHP1导致EEF1A的快速蛋白水解,广泛的蛋白质聚集以及HSF1介导的应激反应的激活。最后,在研究III中,我们阐明了CHP1如何有助于EEF1A折叠和EEF1A折叠途径中伴侣作用的有序序列。我们发现CHP1与EEF1A G域的开关I区域中的α3螺旋结合,对于核苷酸结合至关重要,从而延迟了G域的核苷酸引导的折叠。随着EEF1A结构域II的合成开始,将基板转移到下游伴侣ZPR1以进行最终成熟。我们的结果提供了洞察共同翻译蛋白折叠的分子机制及其对蛋白质组稳定性的影响,以及对HSF1的调节,这是真核细胞中对蛋白质毒性应激的反应的中心介体。
折叠更改|自动计算倍数变化截止值会在上传观察值时自动计算折叠变化。将设置折叠更改截止,以使分析中包含的功能数量尽可能接近目标数字(请参见下文)。使用此选项时,不需要设置“折叠更改|分析截止”,因为它是由工具自动计算的,用于每个统计比较。使用此选项时,对于每个统计比较,倍数变化分析截止可能会有所不同。
摘要 内质网 (ER) 是存在于各种真核细胞中的细胞器,负责细胞内蛋白质的合成、翻译后修饰、折叠和运输,以及调节脂质和类固醇代谢和 Ca 2+ 稳态。缺氧、营养缺乏和低 pH 值肿瘤微环境导致错误折叠或未折叠蛋白质在 ER 中积累,从而激活 ER 应激 (ERS) 和未折叠蛋白质反应,导致细胞稳态恢复或细胞死亡。ERS 在癌症发生、进展和对治疗的反应中起着至关重要的作用。本文回顾了当前与 ERS 相关的研究,卵巢癌是全球女性中最致命的妇科恶性肿瘤,并讨论了药物和治疗干预的可能靶点。 关键词 内质网应激;未折叠蛋白反应;卵巢癌;靶向治疗
折叠绑定和折叠是由 Unruh (Eurocrypt '16) 提出的,分别作为计算绑定和抗碰撞的后量子强化。这些概念在促进将经典安全证明“提升”到量子设置方面非常成功。然而,一个基本而自然的问题仍未得到解答:它们是足以实现这种提升的最弱概念吗?在这项工作中,我们通过给出一个经典的承诺和开放协议来肯定地回答这个问题,该协议是后量子安全的,当且仅当所使用的承诺方案(分别为哈希函数)是折叠绑定(分别为折叠)。我们还将折叠绑定的定义推广到量子承诺方案,并证明当此承诺和开放协议中的发送者传达量子信息时,等价性仍然有效。因此,我们确定各种“弱”绑定概念(总和绑定、CDMS 绑定和明确性)实际上等同于折叠绑定,无论是后量子承诺还是量子承诺。最后,我们证明了一个“双赢”的结果,表明非崩溃绑定的后量子计算绑定承诺方案可用于构建模棱两可的承诺方案(反过来,该方案可用于构建一次性签名和其他有用的量子原语)。这强化了 Zhandry(Eurocrypt '19)的结果,表明同一对象产生量子闪电。
摘要:折纸结构具有轻便、坚硬和可扩展的优点。一些可扩展结构已经在市场上广泛使用,但尽管许多人试图开发一种可在轴向折叠而不会弯曲的聚对苯二甲酸乙二醇酯 (PET) 瓶,但这种瓶子尚未上市。因此,本研究旨在开发一种易于折叠而不会弯曲的 PET 瓶。初始模型由七层组成,其中五层(即不包括盖子和底部)设置为螺旋圆柱体。该模型可以相当容易地折叠而不会弯曲。然而,模型在压缩后会回弹到几乎原来的高度。因此,我们开发了具有两层或三层螺旋层的新型 PET 瓶来解决这个回弹问题。我们的新设计可以将可折叠层插入不可折叠层(例如锥形壳或圆柱壳)中,以抑制压缩后的回弹。此外,我们新设计中可折叠层和不可折叠层之间的凹槽可以进一步有助于捕获可折叠部件。而且,我们的新设计可以实现部分压缩,以在液体部分消耗时降低瓶子的高度。
ऄԉલਭ /୧૱ਘԉܑռ /୧૱ਘԉܑռ /եં /电气调整 /电动折叠 /后视镜加热 /锁定自动折叠 /镜像内存 /自动反向翻转< / div> down < / div>
蛋白质在体内稳健且可重复地折叠,但许多人不能在体外与细胞成分分离折叠。在体外或体内,蛋白质本地构象的途径仍然很大未知。硅质中概括蛋白质折叠途径的缓慢进展可能表明我们对折叠的理解在自然界中的理解中的基本缺陷。在这里,我们认为活细胞中的蛋白质折叠可能仅由Gibbs自由能的减少驱动,并提出应将蛋白质折叠在体内建模为活性能量依赖性过程。这种蛋白质折叠机的作用机理可能包括直接操纵肽主链。为了显示蛋白质折叠机的可行性,我们进行了分子动力学模拟,通过使用机械力来旋转C-末端氨基酸,同时限制了N末端氨基酸运动,从而增强了分子动力学模拟。值得注意的是,将这种简单的肽骨架对标准分子动力学模拟的简单操纵的引入确实促进了五种不同α-螺旋肽的天然结构的形成。这种效果可能在体内的共同翻译蛋白折叠期间起作用:考虑到核糖体的肽基转移酶中心tRNA 3'-end的旋转运动,这种运动可能会引入新的肽,并以类似于我们的模拟方式以类似的方式影响肽的折叠路径。