由于中枢神经系统的中枢神经系统稀有,没有明确的国际治疗建议。的治疗和玻璃体内甲氨蝶呤和/或ritiximabi治疗的基础上使用全身性高剂量细胞抑制作用(40-42)。利妥昔单抗时,可以降低甲氨蝶呤注射的频率,而利曲司型也可以用作疾病中折射剂中甲诺抗的单一物质。辐射疗法可用于单独治疗眼睛淋巴瘤或与局部疗法结合。然而,如果随着疾病发展到中枢神经系统的其余部分,则其使用受到许多急性和延迟的不良反应的限制,以及患者的甲氨蝶呤治疗相关的静修性,以及对患者的甲氨蝶呤治疗相关。系统尚未证明在无疾病或生存期间增加PVRL,也没有在中枢神经系统中其他地方的疾病进展(42)。眼内淋巴瘤的局部治疗更为激烈,可防止该疾病转移到中枢神经系统的其余部分,没有令人信服的证据。在中枢神经系统的眼睑中
基于物理的渲染是一种创建材料的方法,这些材料将准确地响应光线,就像它们在现实世界中一样。这是一种基于测量表面值的理论。有什么好处?基于物理的渲染消除了猜测我的材料在特定光照条件下会是什么样子的麻烦。我们可以放心,如果我们必须改变场景中的光照,材料将随之改变,并像在现实生活中一样发挥作用。制作 PBR 材料需要更少的纹理,从而节省计算内存。这将有助于为您的公司制定纹理标准,因为您知道创建的每种材料都将具有构成物理精确材料的所有纹理贴图。PBR 背后的物理学:光是如何工作的?为了帮助我们更好地构建纹理材料,我们应该对光如何工作以及如何与我们周围的材料相互作用有一个基本的了解。当光波遇到物体时,它们会根据物体的成分和光的波长被透射、反射、吸收、折射、偏振、衍射或散射。反射:反射是指入射光(入射光)照射到物体上并反射回来的情况。非常光滑的表面(如镜子)几乎可以反射所有入射光。我们周围的大多数材料都有某种形式的表面粗糙度,这将
手性在许多物理,化学和生物学领域至关重要,那里有两种不可感染的形式(对映异构体),其中一个是另一种镜像。自巴斯德时代以来,手性和磁性之间的相互作用一直引起了人们的关注,这是新兴的媒介的来源。基本的对称性论点表明,当将手性系统置于磁场中时,允许使用磁性效果的全新效果系列(MCHA)(MCHA)(有关最近的综述,请参见1)。该家族的第一个成员要在实验中报告,光学MCHA,cor-响应于在吸收和折射的非极化光的吸收和折射中,并平行或与fine field eeld平行,2。3最初在可见的波长范围内观察到4、5、6的存在,后来在整个电磁频谱中确定了从78到X射线,910和Photochem-Istry中的整个电磁谱。11电MCHA(EMCHA),在Bismuth螺旋,12个碳纳米管的电阻中观察到,13碳纳米管,14个散装的导体,15个金属,15,16 16半导体17和超导体18作为电阻和电气的抗性i的电阻,并取决于电气的抗药性。 b通过(bI)=0(1 +b·i)(1)
所有患者 - 包括最不利的患者 - 在眼科诊所和医院外有一些负担得起的优质眼保健。眼护理中适度地整合到初级护理中,并且通过外展诊所进行了一些时间。在全国范围内提供中等水平的社区递送眼保健。满足人口需求的社区提供的眼保健计划是有限的,并且在他们提供的服务类型上有所不同。地区眼中心(国家转诊医院)和省医院提供了一些儿科服务,这些儿科服务无需为患者提供。农村地区的人口无法轻松到达服务 - 运输到医疗机构,服务成本是主要障碍。可提供白内障手术服务,但没有达到某些人群。糖尿病性视网膜筛查都可以在各个级别(初级,次要和推荐中心)进行,但治疗服务仅在Honiara和省级外展环境中可用。对于某些患者而言,缺乏运输是进入的障碍。折射和光学服务可用,但没有达到某些人口。低视觉和视力康复服务仅在Honiara的区域眼中中心(国家转诊医院)提供。
三阴性乳腺癌(TNBC)是一类复杂的乳腺癌亚型,其缺乏雌激素受体(ER)、孕激素受体(PR)和人表皮生长因子受体 2(HER2),具有侵袭性强、复发率高、预后不良等特点(1)。目前,临床上批准用于治疗 TNBC 的新兴靶向治疗策略包括聚(ADP-核糖)聚合酶(PARP)抑制剂(2)、免疫检查点抑制剂(ICI)(3)和抗体-药物偶联物(ADC)(4)。尽管生存结果有所改善,但对于未经选择的 TNBC 患者,其整体疗效仍然不令人满意。据报道,ICI 单药治疗 TNBC 的反应率为 5%~25%(5)。治疗折射的原因有很多,至少部分归因于肿瘤微环境的异质性(6,7)。针对不同亚型的 TNBC ,迫切需要新的治疗选择,特别是考虑到不同亚型独特的生物学特征和肿瘤微环境的高度异质性的治疗选择,这已成为 TNBC 研究的一个活跃领域。在本研究专题中,我们通过 11 篇文章(包括 5 篇原创研究论文、5 篇综述(或微综述)文章和 1 篇文献计量分析)介绍了主题“TNBC:异质性、肿瘤微环境和靶向治疗”。
部分 - I:基础研究方法I.数学方法特殊功能(Hermite,Bessel,Laguerre和Legendre功能)。傅立叶系列,傅立叶和拉普拉斯变换。复杂分析,分析函数的要素; Taylor&Laurent系列;两极,残留和积分评估。II。 经典力学中心力动作。 两次身体碰撞 - 散射在实验室和质量框架中心。 僵硬的惯性张量的刚体动力学。 非惯性框架和伪构造。 最少动作的原则。 广义坐标。 约束,拉格朗日和哈密顿的形式主义以及运动方程。 保护法律和循环坐标。 泊松支架和规范转换。 周期性运动:小振荡,正常模式。 相对论的特殊理论 - 洛伦兹转化,相对论运动学和质量 - 能量等效性。 iii。 电磁理论静电学:高斯定律及其应用,拉普拉斯和泊松方程,边界价值问题。 磁静态学:生物 - 萨瓦特定律,安培定理。 电磁诱导。 麦克斯韦的方程式和线性各向同性介质中的方程;接口处的字段上的边界条件。 标量和矢量电势,量规不变性。 在自由空间中的电磁波。 电介质和导体。 反射和折射,极化,菲涅尔定律,干扰,连贯性和衍射。 iv。 穿过障碍物。II。经典力学中心力动作。两次身体碰撞 - 散射在实验室和质量框架中心。僵硬的惯性张量的刚体动力学。非惯性框架和伪构造。最少动作的原则。广义坐标。约束,拉格朗日和哈密顿的形式主义以及运动方程。保护法律和循环坐标。泊松支架和规范转换。周期性运动:小振荡,正常模式。相对论的特殊理论 - 洛伦兹转化,相对论运动学和质量 - 能量等效性。iii。电磁理论静电学:高斯定律及其应用,拉普拉斯和泊松方程,边界价值问题。磁静态学:生物 - 萨瓦特定律,安培定理。电磁诱导。麦克斯韦的方程式和线性各向同性介质中的方程;接口处的字段上的边界条件。标量和矢量电势,量规不变性。在自由空间中的电磁波。电介质和导体。反射和折射,极化,菲涅尔定律,干扰,连贯性和衍射。iv。穿过障碍物。静态和均匀电磁场中带电颗粒的动力学。量子力学波颗粒偶性。schrödinger方程(时间依赖性和与时间无关)。特征值问题(盒子中的粒子,谐波振荡器等)。坐标和动量表示中的波函数。换向者和海森伯格的不确定性原则。dirac表示法。运动中心的运动:轨道角动量,角动量代数,自旋,添加角动量;氢原子。船尾 - 盖拉赫实验。
摘要折射结构常数的索引,C,N 2表征了光湍流的强度,描述了传播电磁束穿过不均匀加热的湍流环境的破坏。为了改善预测模型,至关重要的是,对环境参数和光学湍流之间的关系有更深入的了解。到此为止,在马里兰州安纳波利斯的塞文河附近的切萨皮克湾建立了一个流水,890 m的闪烁仪链路。特定于闪光灯计的C n 2数据,以及在大约15个月的时间内收集了许多气象参数,以表征近野马环境中的闪烁仪链接。这种接近海洋连接的特征与在先前的陆地和开放海洋连接中观察到的特征不同。此外,现有用于预测开放式链路环境参数C N 2的宏观气象模型显示在近野马环境中的性能很差。虽然近海改编的宏观气象模型显示出较低的预测误差,但本研究表明,可以开发新的模型以减少近距离环境中的C N 2预测误差。完整的数据集,包括C N 2测量,据我们所知,是第一个延伸超过一年的测量之一。
具有不寻常的电磁正确性的结构化材料在几种易流动作品1 - 4后引起了显着的关注,这表明,通过调整常规金属的微观结构和介电的微观结构,可以在此类媒体中从根本上改变光的传播。显着的效果,例如负折射,5,6个亚波长度成像,7,8披肩,9,10和通过无损的替代棱镜的调色板的反转,理论上预测了11个,在某些情况下进行了预测。某种程度上类似于常规的晶体材料,超材料通常由许多相同的夹杂物组成,这些夹杂物在常规晶格中排列。包含物的尺寸比辐射的波长小得多。在最简单的情况下,在最简单的情况下,仅使用少数有效的参数来实现电磁波传播的特征,可以通过使用均质化技术来简化这种复杂系统的研究,从而实现了电磁波传播的特征:有效的介电性和有效的渗透性。的确,超材料的一个重要特征是它们的磁反应可能非常强,尽管材料的基本成分通常是较大的或介电颗粒具有内在的磁性特性。1这种人工磁性是由夹杂物中引起的电流的沃克斯部分诱导的,在某些情况下,该部分可能非常接近对真正磁性粒子的反应。12
摘要 - 在本文中,我们专注于通过使用车辆到基础结构(V2I)链接从蜂窝车辆(CVS)卸载的任务来提高自主驾驶安全性,并将其转移到多访问Edge Computing(MEC)服务器。考虑到可以将用于V2I链路的频率重复用于车辆到车辆(V2V)通信以改善频谱利用率,因此每个V2I链接的接收器可能会严重干扰,从而导致任务卸载过程中的中断。为了解决这个问题,我们建议部署可重新配置的智能构成表面(RIC),不仅可以启用V2I反射性链接,而且还可以在V2V链接处取消利用其超材料的计算能力。我们为CVS和MEC服务器之间的任务卸载比率,V2V和V2I通信之间的频谱共享策略以及RICS反射和折射矩阵设计了联合优化公式,目的是最大程度地利用基于安全的自动驱动任务。由于问题的非跨性别性和自由变量之间的耦合,我们将其转换为更易于处理的等效形式,然后将其分解为三个子问题,并通过替代近似方法求解。我们的仿真结果证明了拟议的RIC优化在提高自动驾驶网络安全性方面的有效性。索引项 - 功能,自动驾驶,多访问边缘计算,频谱共享,任务卸载。
367 电气通信:声波系统与装置 1 声纳对抗措施 2 应答器 3 .声纳浮标和声纳浮标系统 4 ..带有部件启动或部署装置 5 ..带有多个声纳浮标 6 .带有多个应答器 7 声像转换 8 .声全息术 9 ..地震显示 10 ..液体或可变形表面全息术 11 .带有记忆装置 12 光束稳定或补偿 13 测试、监测或校准 14 地震勘探 15 .海上勘探 16 ..传感器位置控制 17 .液压机械 18 .流体变化 19 ..传感器电缆位置确定 20 ..多水听器电缆系统 21 ..信号处理 22 ..传感器输出加权 23 ..受控源信号 24 ..混响消除 25 .测井 26 ..阈值设置系统 27 ..时间间隔测量 28 ..振幅测量 29 ..峰值振幅 30 ..振幅比较 31 ..非压缩声波能量 32 ..频率相关确定 33 ..深度记录或控制 34 ..接收信号周期鉴别 35 ..井眼或套管状况 36 .陆地折射类型 37 .陆地反射类型 38 ..信号分析和/或校正 39 ..随机信号相关 40 ..接收相关 41 ..传输相关 42 ..标准相关 43 ..滤波器