Coffee Break & POSTER SESSION Joung research: Julia Szewc - Effects of antidepressant use on the organ of vision Emilia Nasiłowska - The influence of using proper correction of refractive error and vision therapy in patients suffering from chronic symptoms of asthenopia – case studies Anna Gregarová - Enhancing Clinical Skills in Optometry: The Role of Active Learning and Simulation Nika Sever - The economic impact of vision loss Aleksandra Cmiel - The influence of accommodative spasm on the reliability and outcomes of optometric assessment Mrak Dominik - The influence of negotiation skills on successful negotiations in the optical industry of Zagreb county Rinos Čočaj - Cumulative analysis of blue light threats Julia Staś - Colour vision in type 1 diabetes Tretinjak Korina - Examinating symptoms of depression, anxiety and stress in people with折射错误
在某些频率下,通过抗磁性有序的磁晶体传播的光传播可以表现出与双曲线极性子相关的各种现象。由于强烈的各向异性而出现了有趣且可能有用的现象,这是由镁质 - 波利顿共鸣驱动的强烈各向异性的,包括负折射和聚焦在扁平镜头中。在双曲介质中,这种不寻常的光学器件通常在各向异性垂直或与介质的界面平行时表现出来。然而,各向异性方向可以是控制波传播的关键药物。在这里,我们探讨了如何使用这种材料特性来大幅度修改光学现象。更具体地说,我们发现,通过将光轴的方向倾斜相对于抗铁磁晶体的表面,可以获得不对称的波传播,进而可以用来将其用于横向调节由双胞胎介质制成的平面镜头的焦点。
在此应用说明中,我们将讨论折射元素阵列的制造,以生成带有光角动量(OAM)的电磁波。此光学功能先前以各种方式实现,包括一对精确排列的圆柱晶状体,螺旋相板(SPP),静态或动态DOE(其中动态版本是通过液体晶体空间光调节器获得的,或者最近通过metasurfaces获得的。然而,通常将其他元素插入下游的光学路径中,以抵消带有OAM模式的光束的自然差异或在需要进行聚焦的应用中利用其特性,例如将OAM在光纤中进行耦合,以在电信中或在电信中进行波动或浮动浮动的浮动浮动型浮动或浮动浮动的浮动。
Sergei Gasilov的高级科学家,加拿大光源Sergey Gasilov是加拿大光源的高级科学家,专门从事仪器和技术的开发,用于硬X射线成像和微视频学。他毕业于莫斯科工程物理研究所,后来又在俄罗斯,意大利,日本,法国和德国工作,从而使用不同的X射线来源进行相比的X射线成像。 在他的博士后研究期间,谢尔盖(Sergey)开发了折射成像技术的硬X射线指数,用于对欧洲同步加速器辐射设施的大型生物医学标本进行层析成像检查。 后来,谢尔盖(Sergey)在ANKA同步器源构建了硬X射线成像光束线和显微镜站。 自2018年以来,谢尔盖(Sergey)负责加拿大光源的生物医学成像和疗法(BMIT)束线。 来自加拿大和国外的生物医学研究人员和物质科学家应用BMIT的最先进的工具和软件工具,用于对位于现场,室内和现场的各种标本的3D非破坏性成像。他毕业于莫斯科工程物理研究所,后来又在俄罗斯,意大利,日本,法国和德国工作,从而使用不同的X射线来源进行相比的X射线成像。在他的博士后研究期间,谢尔盖(Sergey)开发了折射成像技术的硬X射线指数,用于对欧洲同步加速器辐射设施的大型生物医学标本进行层析成像检查。后来,谢尔盖(Sergey)在ANKA同步器源构建了硬X射线成像光束线和显微镜站。自2018年以来,谢尔盖(Sergey)负责加拿大光源的生物医学成像和疗法(BMIT)束线。来自加拿大和国外的生物医学研究人员和物质科学家应用BMIT的最先进的工具和软件工具,用于对位于现场,室内和现场的各种标本的3D非破坏性成像。
所有申请或正在申请助理商店官员,守望者(宿舍守望者),初级管理员(房屋饲养员),上师职员,助理工程师(民用),助理工程师(电气),助理工程师(空调和折射),初级工程师(电气)工程师(电气),高级机构和机械机制,机械和冰期机构,助理工程师(电气)助理工程师(电气),机械型机构,机械型机构,机械师和机构, (空调和制冷),商店守门员库,电工,机械师(E&M),巡线员(电气),操作员(E&M)/升降机操作员,水管工,电线和裁缝级IIIno's:2017/124,2017/138,2017/139,2017/147,2019/145,2019/151,2019/157,2019/158,2019/158,2019/159,2019,2019/160 2019/007、2019/008、2019/009、2019/010以及随后的重新打开通知,日期为2023年7月25日AIIMS RISHIKESH;特此通知: -
o 顺运动 o 逆运动 ▪ 视网膜镜检查程序 ▪ 患者 ▪ 视力表 ▪ 折射仪/综合验光仪 ▪ 工作距离 ▪ 截距 ▪ 球镜/柱镜 ▪ 验证中性 ▪ 设置 ▪ 将患者置于综合验光仪后面 ▪ 看图表(不要看光线,不要看近处的任何物体,包括验光师) ▪ 与患者保持距离 ▪ 来回照射眼睛并观察反射 ▪ 截距 ▪ 在您正在中和的子午线对面划线 ▪ 顺运动:眼睛的负度数太多,增加正度数 ▪ 逆运动:眼睛的正度数太多,增加负度数 ▪ 光线超出瞳孔 ▪ 如果没有散光或不在轴上,则与反射对齐 ▪ 球镜/柱镜 ▪ 分别中和每个子午线 ▪ 验证中性 ▪ 中和后瞳孔充满光线。 ▪ 为了验证▪ 远离患者,您应该看到逆向运动。 ▪ 主观验光:起点
化学蒸气沉积的CVD锌硒尼德®是首选的材料,作为在高功率CO 2激光器中用作光学成分的材料,这是由于其低散装吸收在10.6微米时。其折射均匀性和均匀性的索引提供了出色的选择性性能,可作为保护窗口或高分辨率向前外观(FLIR)热成像设备的光学元素。该材料也已用作医疗和工业应用中的小窗户和镜头,例如热元和光谱法。cvd锌硒化®是化学惰性的,非Hygromocopic,高度纯净的,理论的,易于加工。由于吸收和散射,它具有极低的体积损失,对热冲击具有很高的抵抗力,并且在几乎所有环境中都是稳定的。可以根据您的规格制作自定义直径,矩形,CNC式空白,生成的镜头空白,棱镜和近网状形状圆顶。
学期 - I PH-101物理-I 1。Special Theory of Relativity: Frame of Reference, Galilean Transformation, Inertial and Non-inertial frames, Postulates of Special Theory of Relativity, Michelson-Morley Experiment, Lorentz transformation of space and time, Length contraction, Time dilation, Simultaneity in relativity theory, Addition of velocities, Relativistic dynamics, Variation of mass with velocity, Equivalence of mass and energy.2。热物理学:Maxwell-Boltzmann分子速度的分布定律,R.M.S.S.S的评估以及平均速度和最可能的速度,平均自由路径,运输现象。3。几何光学:组合薄镜头,同轴光学系统的主要点,厚镜头,基数的位置和特性,牛顿公式,图像的图形结构。眼部碎片,修复点。光学仪器光谱计(棱镜和光栅),六分。4。物理光学:观察干扰的干扰条件。条纹的连贯性和可见性。使用菲涅尔的二倍主义生产干涉条纹和波长的测定。米其逊干涉仪及其用途。由于薄膜引起的干扰。楔形胶片。牛顿的戒指。衍射-Frasnel的衍射,菲涅耳的半个周期区域,区域板,Fraunhofer的衍射,单缝,双缝。平面光栅理论。主最大值的宽度。瑞利的决议标准。解决棱镜和光栅的能力。通过反射极化。极化 - 非极化,极化和部分极化的灯光。单轴晶体,宝丽来,Huygen的双重折射理论的双重折射。半波和四分之一波板。生产和分析平面椭圆形和圆形偏振光。光学活动。菲涅尔的光旋转理论,特定旋转,比夸夸兹和劳伦斯半阴影。5。全息图:基本原理,全息及其应用。6。激光器:刺激和自发发射,爱因斯坦系数,刺激和自发排放的相对贡献,种群反演,激光发射,红宝石和He-ne激光器,激光光的特征。7。声学:超声波的生产和检测,液体中速度的测量,超声处理的应用。建筑物的典范。参考文献1。Mechanics-D.S.Mathur 2。optics-a.k.ghatak 3。热力和热力学-Brijlal&Subramanium 4。热物理b.k.agarwal 4。振荡和波的物理学 - r.b.singh 5。工程物理-A.S.S.Vasudeva
从所见的属性 - 对象对学习以概括为未看到的组合物,已在组合零拍学习(CZSL)中进行了广泛的研究。但是,CZSL设置仍然仅限于看到的属性和对象,并且不能概括地看不见的概念及其组成。为了克服这一局限性,我们提出了一项新任务,开放的词汇 - 组成零 - 折射学习(OV-CZSL),其中评估了未看到的属性,对象和看不见的组成。表明OV-CZSL是一个具有挑战性但可解决的问题,我们提出了基于存在的数据集MIT态的三个新基准(Isela,Lim和Adelson 2015),C-GQA(Mancini等人(Mancini等)(Mancini等人)2022)和vaw-czsl(Saini,Pham和Shrivastava 2022; Pham等人2021),以及新的基准和评估设置。我们将语言嵌入和外部词汇与我们新颖的邻里扩展损失一起使用,以允许任何方法学习观察和看不见的原始物之间的语义相关性。
1。引言有很大的兴趣找到具有较大但快速的非线性的材料。这一兴趣主要是在为全光开关和传感器保护应用的材料搜索中驱动的,它涉及非线性吸收(NLA)和非线性折射(NLR)。在许多情况下,材料的非线性光学特性的数据库不足以确定指导合成工作的趋势。因此,需要扩展此数据库。在本书中讨论了确定非线性系数的方法。Z扫描技术是一种可以在固体,液体和液体溶液中快速测量NLA和NLR的方法。1,2在本章中,我们首先对该技术及其各种衍生物进行了简要回顾。然后,讨论有关“薄”和“厚” 3,4,5,6的非线性介质Z-Scans,Eclips Z-Scan(EZ-SCAN)7,两色Z-SCANS 8,9,时间分辨时间分析的激发型Z- SCANS 10,11和顶级Z-Scans Z-Scans 12。最后,将概述使用这些技术确定的有机材料的非线性光学特性的测量值。