摘要:电化学 DNA (e-DNA) 生物传感器是可行的疾病监测工具,它能够将所需核酸靶标和功能化传感器之间的杂交事件转化为可记录的电信号。这种方法提供了一种强大的样品分析方法,具有在低分析物浓度下快速产生响应的巨大潜力。在这里,我们报告了一种与 DNA 杂交相关的电化学信号放大策略,通过利用 DNA 折纸方法的可编程性来构建夹层分析来提高与目标检测相关的电荷转移电阻 (R CT )。与传统的无标记 e-DNA 生物传感器设计相比,这使传感器的检测限提高了两个数量级,并且无需探针标记或酶支持,即可在 10 pM 至 1 nM 之间的目标浓度下实现线性。此外,事实证明,这种传感器设计能够在具有挑战性的富含 DNA 的环境中实现高度的链选择性。这种方法是一种实用方法,可满足低成本即时诊断设备所必需的严格灵敏度要求。关键词:DNA 纳米技术、DNA 杂交、电化学阻抗谱、抗菌素耐药性基因、靶标选择性、灵敏度增强、即时诊断设备
图1:纳米壳合成过程和稳定性验证的示意图。(a)通过三步固定过程在细胞膜上合成DNA纳米壳,包括:(i)A'-SSDNA启动器在糖科利克斯上的固定化; (ii)杆A(绿色)通过ssDNA杂交与A'-ssDNA结合,以及(iii)杆B(蓝色)通过H-SSDNA在杆A和H'ssDNA上的杂交在杆上的rod a和h'-ssDNA杂交的结合和交联。杆A和B的直径约为7nm,长度约为400nm。三个A-SSDNA(蓝色),14 s-ssDNA(黑色)和14 h-ssDNA(黄色)均匀分布在Rod A上。14 s-ssDNA(黑色)和14 h'-ssDNA(黄色)均匀分布在杆B上。所有ssDNA悬垂都是22对。比例尺:500 nm。(b)单个DNA棒的琼脂糖凝胶电泳,以及30分钟在37°C下孵育30分钟后杆的混合物。(c)单个DNA棒和两种类型的细胞培养基中的凝集的琼脂糖凝胶电泳研究。杆A和棒混合物。(d)通过铜免费点击化学,将DBCO标记的A'-SSDNA启动器固定在叠氮化物细胞表面糖脂上。
就像单个多肽链可以自变成复杂的3D结构一样,单个DNA可以自折入DNA折纸。大多数DNA折纸结构(即支架堆盖和DNA瓷砖系统)都使用数百个短单链DNA。因此,这些结构带来了分子间结构固有的挑战。如果折纸结构是由一个DNA链构造的,涉及分子间相互作用的许多组装挑战可以解决,在一个DNA链中构建,折叠与浓度无关,折叠结构对核酸酶降解具有更耐药性,并且可以在成本千分之一的情况下以工业尺度以一千分之一的范围实现合成。本评论讨论了单链DNA折纸中采用的设计原理和考虑因素及其潜在的好处和缺点。
折叠和折纸原理可以从平面paters中实现三维几何形状[1]。由于制造过程通常更有效,甚至一定要在两个维度上完成,因此折叠提供了一种利用这种效率的方法,并具有三维最终结果。平面制造过程与折叠的组合导致了与机器人[2,3],弹簧 - 孔子机制[4],反射和阵列[5,6]和超材料[7,8]一样的潜在应用。兼容的机制通过经历弹性变形而不是传统链接的刚体运动来转移或转化运动,力或能量[9]。各种制造技术可用于各种规模的合规机理,例如电线电气加工(EDM),增材制造,表面微加工,
在固态电解质(SSE)中使用金属有机框架(MOF)一直是一个非常有吸引力的研究领域,在现代世界中引起了广泛关注。SSE可以分为不同的类型,其中一些可以与MOF结合使用,以通过利用高表面积和高孔隙率来改善电池的电化学性能。但是,它也面临许多严重的问题和挑战。在这篇综述中,分类的不同类型的SSE类型,并描述了添加MOF后这些电解质的变化。之后,引入了这些带有MOF的SSE,以用于不同类型的电池应用,并描述了这些SSE与MOF结合在细胞电化学性能上的影响。最后,提出了MOFS材料在电池应用中面临的一些挑战,然后给出了一些解决MOF的问题和开发期望的解决方案。
特别适用于为模仿生物微型游泳者的微电机提供拍打和/或旋转驱动。开创性的例子是 Dreyfus 等人建造的游泳者,它由一串拴在红细胞上的磁珠组成。[25] 在这里,游泳以衍生方式诱导精子,即通过拍打一个支持弯曲波传播的柔性附属物。自这一突破以来,已经制造出几种其他受生物启发的磁性微型游泳者,包括由定制微磁体、软磁复合材料和众多结构制成的微型游泳者,其中磁性区域驱动非磁性鞭毛/附属物。[13,15,16,20,26–29] 人们越来越多地研究附属物结构对游泳表现的影响,表明无论是生物系统还是合成系统,游泳速度都会随其长度、弹性和划水频率而变化。 [15,26,28,30] 此外,已确定生物微游泳者的集体相互作用微妙地依赖于鞭毛 (附属物) 耦合动力学和鞭毛下长度尺度上产生的流动。 [30] 这些相互作用在自然界中被用来提高性能:例如,老鼠精子形成长序列以提高其速度。 [7,10,30–33] 尽管如此,对合成系统的附属物设计进行严格控制仍然很困难,当需要纳米级特征时更是如此。 在纳米尺度上实现这种控制的一种特别有前途的方法是 DNA 自组装,正如 Maier 等人所采用的,用于生成基于 DNA 瓦管束的合成鞭毛。 [26] 当连接到旋转的磁珠上时,这些束通过水动力学组装成几微米的螺旋状结构,以类似于细菌的方式驱动平移运动。尽管组装技术可以精确控制合成鞭毛的扭曲和硬度,但它们的长度容易发生寡聚化并且不受控制。在本文中,我们基于 Maier 等人的工作,使用另一种 DNA 自组装策略,即 DNA 折纸。在这里,一个由 8634 个核苷酸组成的单链 DNA 环通过单链 DNA 寡聚体的特定结合以预定方式折叠,以构建定制的、尺寸可控的纳米级附加物。[34–37] 我们提出了一种调节附加物在磁珠上的覆盖率的方法,使其均匀或对称性破缺。通过时间相关磁场摇动这些结构时,我们发现,虽然完全被 DNA 折纸覆盖的结构主要表现出布朗动力学,
众所周知,折纸超材料会根据其折叠状态显示出高度可调的泊松比值。关于可部署折纸镶嵌中的泊松效应的大部分研究都局限于理论和模拟。要通过实验实现折纸超材料中所需的泊松效应,需要特别注意边界条件,以实现可部署的非线性变形,从而实现可调性。在这项工作中,我们提出了一种新颖的实验装置,适用于研究在施加方向和横向同时发生变形的 2D 折纸镶嵌中的泊松效应。该装置包括一个夹持机构(我们称之为圣维南夹具),以消除单轴测试实验中的圣维南端部效应。使用此装置,我们对 Morph 折纸图案进行泊松比测量,该图案的配置空间结合了 Miura-ori 和 Eggbox 母图案的特点。我们通过实验观察到了 Morph 图案的泊松比符号切换能力,以及它通过拓扑变换显示泊松比的完全正值或完全负值的能力。为了证明新装置的多功能性,我们还对标准 Miura-ori 和标准 Eggbox 图案进行了实验。我们的结果表明,在折纸超材料中泊松比测量及其可调性方面,理论、模拟和实验是一致的。所提出的实验技术可用于研究折纸超材料在静态和动态状态下的其他可调特性,例如有限应变泊松比、弹性热膨胀和波传播控制。
• 生活技能 o 社交、全球意识、倾听背景 美国宇航局的韦伯望远镜将利用其卓越的角分辨率和近红外仪器来发现和研究与我们相似的行星系统,分析太阳系外行星大气的分子组成,并直接对围绕附近恒星运行的木星大小的行星进行成像。韦伯太空望远镜将进行曾经被认为不可能的观测;仅仅为了建造它,就必须发明多种新技术。这面开创性的镜子和强大的仪器将发现和研究遥远的行星系统,分析太阳系外行星大气的分子组成,并直接对围绕附近恒星运行的木星大小的行星进行成像。它还将深入研究过去,追溯最早的恒星和星系诞生的时代。通过扩展我们对宇宙的了解,望远镜将帮助我们回答这些引人注目的问题:“我们是如何来到这里的?”和“我们是孤独的吗?”诺斯罗普·格鲁曼公司致力于确保这一曾经不可想象的成就成为现实。韦伯望远镜被美国国家研究委员会列为天文学和天体物理学的首要任务,是 NASA 和科学界的一项重要项目,也是美国地面和太空天体物理学项目的核心。负责该项目的诺斯罗普·格鲁曼工程师们的任务并不轻松。人们耗费了一亿个小时的时间来建造这架望远镜,它是有史以来最大、最复杂、最强大的太空望远镜。听听工程师们对自己的成就感到自豪——他们正在书写太空探索历史的下一篇章。https://www.youtube.com/watch?v=rErBbFiLbVc 本课将关注三个领域:1)日本宇宙航空研究开发机构 (JAXA) 将折纸原理作为宇航员选拔过程的一部分。候选人必须在为期一周的观察期间折一千只纸鹤。观察员通过这项任务在时间限制内重复性地分析候选人。 2) 了解参与开发韦伯太空望远镜的人员从事的不同工作以及文化多样性。 3) 折纸原理在太空探索中的作用:a) 卫星和深空望远镜(如詹姆斯·韦伯太空望远镜)的许多部件在太空中展开。科学家必须弄清楚如何设计每个部件,使其在发射后正确展开。
抽象的脱氧核糖核酸(DNA)已成为设计下一代超高密度存储设备的有前途的构建块。尽管DNA本质上是高度耐用且密度极高的,但其作为存储设备基础的潜力目前受到诸如昂贵且复杂的制造过程以及耗时的阅读工艺操作等限制的阻碍。在本文中,我们建议将DNA横梁阵列体系结构用于电气可读的读取 - 单位(DNA-ROM)。对于DNA-ROM,我们选择了两个DNA链分别代表位1和位0。DNA电荷传输已通过接触-DNA接触设置进行了研究。从DNA电荷运输研究中获得的结果已用于分析横梁阵列。通过将图像加载到128×128横杆上,对性能进行了分析。对于此应用,我们已经观察到了4.52%的位错误率,功耗为6.75 µW。