通过利用尖端技术(例如数字双胞胎和AI驱动算法)的供应链中,企业可以模拟各种场景,以优化敏捷性和弹性的操作。可持续的供应链和产品护照在采购和生产中实现透明度和问责制
(请提供家属的姓名,与护照上显示的姓名完全一致。如果姓名与护照不符,SATO 将不会预订机票。)姓名关系出生日期当前实际地址(名男姓)(日月年)(城市、州/国家)____________________________________________________________________________________________________________ ______________________________________________________________________________________________________________ ______________________________________________________________________________________________________________ ______________________________________________________________________________________________________________ ______________________________________________________________________________________________________________
总部位于美国明尼阿波利斯的 Prevent Biometrics 公司生产 Prevent Impact 监测护齿套 (IMM)。Prevent 的头部撞击监测系统是市场领先的解决方案,可准确跟踪体育和军事中的头部撞击。运动员在橄榄球、曲棍球、长曲棍球和足球等接触性运动中佩戴,士兵在训练活动中佩戴,护齿套可测量头部撞击的强度、频率、位置和角度。通过选择瑞萨电子 NFC 产品,Prevent Biometrics 能够在线圈错位时保持最佳充电性能,即使它们相距 13 毫米,也能最大限度地减少充电系统的电路板占用空间。此外,消除滤波器可减少损耗,使设备能够提供更高的发射(输出)功率,并且收听者可以获得高达 1W 的功率。
夹片键合 CCPAK-1212:设计下一代 GaN 产品 Serge Karboyan、Ding Yandoc、Barr Licup、Manikant、Sara Martin Horcajo、Stefano Dalcanale、John Denman、Zainul Fiteri、Hagop Tawidian、Manfred Rowe、Sven Zastrau、Adam Brown 和 Bas Verheijen Nexperia,Bramhall Moor Ln,斯托克波特,大曼彻斯特,英国 关键词:GaN、AlGaN、CCPAK1212、夹片键合、封装、产品可靠性。 引言 Nexperia 的商业化 GaN 基功率晶体管在功率器件市场表现出巨大优势,在 650 V 时提供低导通电阻。为了在不同应用(如车载充电器、DC-DC 转换器、牵引逆变器)[1、2] 中实现这种出色性能,Nexperia 推出了一种新型夹片键合封装 HEMT,在高工作电压下具有低关断态漏电。虽然这是 GaN 行业中第一个推出完全夹片键合解决方案而不需要任何引线键合连接的解决方案,但该解决方案的电感比引线封装低 5 倍(2.37 nH 对比近 14 nH),并且封装电阻超低,热阻小于 0.5 K/W [3]。要保持这种性能,需要高水平的器件工程设计,包括 HEMT 设计、MOSFET 设计以及紧凑型 CCPAK 中的共源共栅配置,从而形成具有行业领先性能的创新封装。夹片键合配置用于优化热性能和电气性能,简化的共源共栅可避免使用栅极驱动器。结果与讨论图 1 显示了共源共栅配置中的无引线键合 GaN HEMT 和 Si MOSFET。这些器件位于
我们通过考察君主制和共和制下产权与经济的关系,探究传统国家组织模式持续存在的含义。我们认为,相对于共和制,君主制通过减少内部冲突、行政任期和行政自由裁量权的负面影响,在更大程度上保护了产权。反过来,更好地保护产权可以提高生活水平。使用 1900 年至 2010 年间 137 个国家的面板数据,我们建立并测试了一个包含内生变量的模型。我们发现强有力的证据表明,与所有共和制相比,君主制通过三种理论机制中的每一种都有助于更好地保护产权并提高生活水平。我们还发现,在抵消行政部门的任期和自由裁量权的负面影响方面,民主君主立宪制比非民主君主制和绝对君主制表现更好。我们讨论传统政治权威与统治模式的持续存在对于政治社会学和经济社会学的意义。
游览期间,第 509 轰炸机联队公共事务办公室的一名成员将陪同您,并担任您的导游。游览站点可能会有其他成员提供额外的指示或说明。不遵守指示将导致游览终止,您的团队将被立即护送出基地。
亲爱的编辑,随着 VLSI 技术的发展,环栅 (GAA) 硅纳米线晶体管 (SNWT) 已成为技术路线图末端最终缩放 CMOS 器件最有潜力的候选者之一。一些先驱研究已经证明了 GAA SNWT 的超可扩展性和高性能 [1-3]。然而,在实际制作结果中 [1,2],由于纳米线对蚀刻工艺的阴影效应,环栅栅极电极通常不是关于纳米线中心轴理想对称的,而是沿纳米线轴向呈梯形横截面。栅极电极的这种不对称性会使性能评估不正确,并导致用于电路仿真的器件紧凑模型不准确。然而,对非对称 GAA 硅纳米线 MOSFET 建模的研究仍然不足 [4,5]。本研究建立了非对称栅极GAA SNWT的有效栅极长度模型,并用技术计算机辅助设计(TCAD)仿真对其进行了验证。利用所提出的模型,可以将非对称GAA SNWT视为等效对称器件,从而可以在电路仿真中简化建模参数。仿真与方法。图1(a)沿沟道方向描绘了非对称栅极GAA SNWT的横截面。在
智能技术将改变生命科学行业的各个方面,从药物发现、临床开发和患者护理到制造和复杂药物的可靠供应。这种转变有望开启一个前所未有的创新和效率时代,并将为患者带来更好的治疗效果。
电化学储能是可再生能源发电系统的重要组成部分,有助于建设低碳社会。铅炭电池是一种改进的铅酸电池,将碳加入负极板。它弥补了铅酸电池无法处理瞬间大电流充电的缺陷,具有安全性高、性价比高、可持续发展等优点。铅炭电池的回收效率为98%,回收过程符合所有环境和其他标准。储能用铅炭电池还需要具备深度放电能力,尽管放电深度对铅炭电池正极板的失效有显著影响。本研究优化和增强了铅炭电池的正极板,使其能够同时执行大电流充电(340.255 A)和深度放电(70% DOD)操作。选择合适的铅合金、改善正极板栅的结构以及调节板栅的固化和干燥过程都是优化和改进过程的一部分。升级后的铅碳电池循环寿命为7680次,在相同条件下比未升级的铅碳电池寿命延长93.5%。本文制造的大容量(200 Ah)工业铅碳电池是一种可靠且经济高效的储能选择。
带隙基准源是模拟、数字或混合信号电路(如模数转换器、数模转换器、低压差稳压器、锁相环和许多其他电子设备)的关键组件[1、2、3、4、5、6、7]。带隙基准源提供的电压具有明确而稳定的特性,并且对电源电压和温度变化不敏感。基准源的准确性和稳定性对后续电路的性能起着重要作用[8、9]。因此,已经提出了许多高阶温度补偿技术来降低 TC。[10、11、12] 中讨论了依赖于温度的电阻比补偿技术。其曲率补偿效果主要由两个温度系数电阻之比决定,该比值将根据工艺角和失配而发生剧烈漂移。文献 [13, 14, 15, 16] 进一步讨论了温度补偿法,利用工作在亚阈值区的 MOS 管栅源电压进行补偿,但亚阈值 MOS 管由于补偿面积较大,因此 TC 受工艺影响较大。文献 [17] 则采用了非线性补偿项 T ln T 的方法,T ln T 是由工作在亚阈值区的 MOS 管栅源电压扩散产生的,