n-酰基吲哚4是由共价虚拟筛选命中2A产生的有效的非共价抑制剂。铅化合物简单地合成,在生化的Notum-Opts分析中实现了极好的效力,并在基于细胞的TCF/LEF报告基因测定中恢复了Wnt信号传导。多个高分辨率X射线结构建立了这些抑制剂的常见结合模式,吲哚胺结合在棕榈岩袋中的吲哚胺,关键相互作用是芳族堆积,并且水介导的氢键键合在氧气孔中。这些N-酰基吲哚4将是使用体外研究的有用工具,以研究Notum在疾病模型中的作用,尤其是与结构相关的共价抑制剂配对时(例如,4W和2A)。总体而言,这项研究强调了从共价到非共价抑制剂的设计转换,因此说明了一种用于HIT生成和靶向抑制的良好方法。
长期散布的元素-1(LINE-1,L1)是可转座元素,占人类基因组的17%。这些元素可以复制并插入新的基因组位置。通常,它们在健康组织中保持沉默,但在各种人类疾病中表达。线1表达与衰老,神经退行性疾病,癌症和自身免疫性疾病有关。尽管线1表达与疾病有相关性,但几乎没有什么了解如何调节线路1的表达。为了探讨这一点,我们开发了一个细胞报告系统,以同时监测LINE-1-1编码ORF1P和ORF2P的蛋白质水平。使用此报告基因系统,使用基于基因组CRISPR/CAS9的筛选,我们确定了在RNA和蛋白质水平上控制LINE-1表达的基因。除了诸如Hush Complex之类的已知调节剂外,我们的筛查还发现了ORF1P和ORF2P的先前未知的调节剂,其中许多似乎参与了与人类疾病有关的关键分子途径。这些发现可能会增强我们对调节线路1的分子机制的理解,并提供对与线路1失调相关的疾病的潜在治疗靶标的见解。
活细胞中病毒感染的实时感知对于病毒学研究和抗病毒药发育至关重要。但是,现有方法面临低信号灵敏度的挑战以及病毒操纵和细胞固定的必要性。在这里,我们开发了一种病毒核糖开关(VRIBO)方法,该方法采用病毒复制酶在病毒感染后诱导转基因表达。Vribo旨在检测活细胞中的病毒实时转录和复制,这响应触发了报告基因和治疗基因的翻译。通过整合病毒包装序列,可以通过后代病毒体将Vribo传播到相邻细胞,从而有效地充当“特洛伊木马”。由于跨冠状病毒的顺式作用RNA结构保存,负链Vribo元件显示出有效检测了几种冠状病毒,包括229E和OC43。值得注意的是,Vribo充当双重用途系统,既充当感染检测器和诱导抗病毒系统。vribo具有基本病毒学研究应用的潜力,可以在改善未来冠状病毒的mRNA药物的诱导表达方面采用。
同源重组介导的基因组编辑,也称为基因靶向(GT),是一种必不可少的技术,允许对目标序列进行精确的修改,包括引入点突变,报告基因的敲入和/或交换功能域。然而,由于其低频,很难建立可以广泛应用于大量植物物种的GT方法。我们开发了一种简单且通用的定期间隔短的短粒子重复序列(CRISPR)/CRISPR相关的蛋白9(CAS9)介导的DNA双重链突破(DSB)诱导的GT系统,使用包含CRIS CRIS/CAS9表达构造的多一对矢量,可供选择的标记和GT Donor donor donor template。该系统启用了具有不可选择的特征的目标点突变,以大米和烟草中的几个靶基因。可以精确地使用该系统评估内源性靶基因的GT频率,因此我们研究了用RAD51刺激化合物1(RS-1)处理对DSB诱导GT频率的治疗的影响。GT频率略有但始终如一,通过RS-1处理在两个目标植物中都得到了改善。
TEAD 转录因子已成为 Hippo 变异癌症(例如由 NF2 失活/缺陷引起的间皮瘤)的临床验证靶点。我们开发了一系列新型小分子靶向 TEAD 蛋白质降解剂,这些降解剂基于 TEAD 界面 3 的结合剂。在细胞中,这些化合物通过与 Cereblon 形成三元复合物来诱导 TEAD 降解,从而导致 TEAD 泛素化和随后的蛋白酶体降解。在基于细胞的荧光素酶报告基因测定中,降解剂显示出低纳摩尔活性。通过对真正的 YAP-TEAD 靶基因(例如 CTGF、Cyr61 和 AMOTL2)进行 qPCR 分析,进一步研究了 TEAD 降解的下游效应。通过使用各种间皮瘤细胞系进行细胞活力和增殖测定,将 TEAD 降解剂的有效性与其他类别的 TEAD 调节剂(如棕榈酰化和 YAP–TEAD 蛋白质相互作用抑制剂)进行了比较。最后,我们通过将一种选定的 TEAD 降解剂与约 2,800 种肿瘤药物库相结合,进行了无偏、定量的高通量药物组合筛选 1。
RNA编辑是核酸的内源性修饰,已知在精神分裂症 (SCZ) 中具有重要神经功能的基因中发生了改变。然而,与疾病相关的 RNA 编辑的整体特征和分子功能仍不清楚。在这里,我们分析了四个 SCZ 队列的死后大脑中的 RNA 编辑,发现欧洲血统的患者中存在显著且可重复的低编辑趋势。我们通过 WGCNA 分析报告了一组与 SCZ 相关的编辑位点,这些位点在各个队列中共享。使用大规模并行报告基因检测和生物信息学分析,我们观察到影响宿主基因表达的差异 3′非翻译区 (3′UTR) 编辑位点在线粒体过程中富集。此外,我们表征了线粒体融合蛋白 1 (MFN1) 基因中两个重新编码位点的影响,并展示了它们与线粒体融合和细胞凋亡的功能相关性。我们的研究揭示了 SCZ 中编辑的整体减少以及疾病中编辑和线粒体功能之间的令人信服的联系。
摘要 .目的 .三阴性乳腺癌(TNBC)是女性最常见的恶性、高度异质性肿瘤之一。miR-200c等微小RNA(miRNA)在包括TNBC在内的多种恶性肿瘤中发挥重要作用。但miRNA-200c在TNBC中的生物学作用尚不十分清楚。本研究探讨miR-200c在TNBC生长中的作用机制。方法 .采用逆转录定量聚合酶链式反应检测TNBC组织和TNBC细胞中miR-200c的表达。细胞计数试剂盒8(CCK-8)实验、划痕愈合实验和transwell实验分别观察miR-200c对TNBC细胞增殖、迁移和侵袭的影响。用Western印迹法检测上皮间质转化(EMT)标志物的表达。使用双荧光素酶报告基因检测来测试 ZEB2 是否是 miR-200c 的新靶点。结果。我们的结果表明 ZEB2 是 miR-200c 的新靶点,并且 ZEB2 通过 EMT 介导三阴性乳腺癌的转移。结论。miR-200c 通过靶向 ZEB2 来减弱 TNBC 细胞侵袭和 EMT。因此,我们的数据表明 miR-200c 可用于开发新的 TNBC 早期诊断和治疗策略。
描述:重组A.酸性AAPCAS12B(V型CRISPR相关蛋白CAS12B),无标签。AAPCAS12B属于V型CRISPR效应器CRISPR-CAS12B/C2C1,对于广泛的应用,高温。物种:酸性酸性酸性构建体:CAS12B(全长)(酸性)浓度:0.20 mg/ml表达系统:大肠杆菌纯度:80%格式:水缓冲液溶液。以:50 mm磷酸钠,pH 7.5、300 mm NaCl,1 mM DTT和10%甘油MW:128 kDa GenBank登录:WP_067623834稳定性:至少在-80°C时至少6个月。存储:-80°C使用的说明:在冰上解冻,并在使用前轻轻混合。不要涡旋。在打开前进行快速旋转。等分的小容量,然后闪烁冻结以进行长期存储。避免多个冻结/解冻周期。测定条件:使用基于CRISPR的荧光记者测定法测量了不同量的AAPCAS12B活性,以获得最佳结果。使用RNA引导的DNA与CAS12结合,将靶DNA切割和不加选择的单链DNA侧支裂解激活。荧光信号的发射是由于裂解后ssDNA记者的降解所致。Active Cas12 was thawed on ice while 1X Endonuclease Buffer containing 10 mM Tris- HCl, pH 8.0, 50 mM NaCl, 10 mM MgCl 2 , and 0.1 mg/ml BSA, guide RNA (custom designed crRNA), ds DNA activator (complementary sequence to crRNA and a PAM sequence specific for Cas enzyme) and FQ-ssDNA substrate (用荧光团和淬火器标记)平衡为室温。然后将板密封并在37°C下孵育10-30分钟。使用1X内核酸酶缓冲液制备了活性CAS12(4倍最终浓度)指南RNA(4倍最终浓度)和含有DS DNA激活剂和SSDNA报告基因(2倍最终浓度)的激活器/报告剂混合物(2倍最终浓度)。10 µL的4倍活性CAS12和10 µL的4倍引导RNA在室温下在固体黑色96井板的一半面积中预孵育10分钟。预孵育后,将20 µL的2倍激活剂/报告基因混合物添加到板上,并将其放置在振动孵化器上1分钟。然后将板平衡至室温,去除板密封剂,并在毫用读取器上读取荧光。阴性对照是通过用相等量的测定缓冲液代替酶工作溶液来测量的。应用程序:
摘要 CRISPR/Cas9 系统已用于在多种物种中通过同源定向修复生成荧光标记的融合蛋白。尽管它取得了革命性的成功,但仍然迫切需要提高研究生物中基因组编辑的简便性和效率。在这里,我们建立了一种简化、高效且精确的 CRISPR/Cas9 介导青鳉 (Oryzias latipes) 内源性蛋白质标记策略。我们使用一种无克隆方法,该方法依赖于 PCR 扩增的供体片段,该片段包含由短同源臂 (30-40 bp) 两侧的荧光报告序列、合成的单向导 RNA 和 Cas9 mRNA。我们生成了八个新的敲入系,具有高效的 F0 靶向和种系传递效率。全基因组测序结果显示仅在目标位点发生单拷贝整合事件。我们对这些融合蛋白系进行了初步表征,大大扩展了青鳉可用的遗传工具库。具体来说,我们表明 mScarlet-pcna 线具有作为增殖区的生物范围标签和内源性细胞周期报告基因的潜力。
摘要:要在基因组内特定位点的空间控制生化功能,我们设计了一种合成开关,该开关在绑定到其DNA目标位点时激活。该系统使用两个CRISPR - CAS配合物将从头设计的蛋白质开关(Co -Lockr)的组件共定位到基因组中的相邻位点。共定位触发了从无活动的封闭状态到具有裸露功能性肽的活动开放状态的开关中的构象变化。我们在酵母中原型制作系统,并证明DNA结合触发了开关的激活,转录因子的募集以及下游报告基因的表达。这个由DNA触发的共洛克雷开关提供了一个平台,为工程师复杂的功能提供了一个平台,该平台只能在基因组内的特定目标位点执行,并具有在包括表观遗传调节,成像,成像和遗传逻辑通心素在内的广泛合成系统中的潜在应用。关键字:CRISPR- CAS,COS-LOCKR,蛋白质开关,遗传回路