NAVFAC 开放环境修复资源 (OER2):确定 MEC/MPPEH 水下埋藏深度的方法军用弹药被发现在某些水下位置,这是历史处置活动以及实弹训练、测试和其他操作的结果。在水下环境中仍能发挥作用的射弹和其他弹药构成爆炸危险,可能会迁移,使人员接触到这些弹药。这种爆炸危险的管理很复杂,取决于特定地点的考虑因素,例如弹药类型、海洋环境、移动潜力以及人员如何接触和与弹药互动。本次网络研讨会的目的是总结为了解水下环境中弹药的移动性和埋藏而开发的科学。将介绍环境观测、弹药观测技术、移动性和埋藏现场观测、移动与埋藏的物理学以及埋藏的物理过程建模。演示将以将这些知识在现有场地的实际应用结束。 演讲者:Bryan Harre,NAVFAC EXWC 和 Joe Calantoni,美国 NRL 博士 日期:2022 年 11 月 9 日,星期三 时间:太平洋时间上午 11 点 | 美国东部时间下午 2 点 通过以下链接注册参加网络研讨会:https://einvitations.afit.edu/inv/anim.cfm?i=697664&k=0468450F7D53 如果您无法点击链接,请将地址复制并粘贴到您的网络浏览器中。 州际技术与监管委员会 (ITRC) 关于可持续弹性修复 (SRR) 的网络研讨会 极端天气事件会对修复措施保护人类健康和环境的能力产生不利影响。可持续弹性修复 (SRR) 被定义为“清理和再利用危险废物场地的优化解决方案,可限制负面影响、最大化社会和经济效益并增强对日益增加的威胁的抵御能力”。该网络研讨会介绍了一些工具,可帮助将可持续和有弹性的实践融入修复项目中。主题:可持续的弹性修复演讲者:ITRC 日期:2022 年 11 月 17 日时间:太平洋时间上午 10 点 | 美国东部时间下午 1 点通过以下链接注册参加 ITRC 网络研讨会:https://clu-in.org/conf/itrc/SRR/有关更多信息,请查看 ITRC 关于此主题的报告:https://srr-1.itrcweb.org/ RPM 培训活动主题的最后一次征集 RPM 培训主题的最后一次征集:现在到 2022 年 11 月 16 日链接:https://einvitations.afit.edu/inv/anim.cfm?i=699708&k=04684B0E7B5F RPM 培训日期更新:2023 年 3 月 14 日至 16 日*这与原始/预计日期不同* 正在评估场地,活动举办批准将决定最终日期和地点。
总之,肝脏不仅是新陈代谢和解毒的中心器官,也是人体免疫防御中不可或缺的参与者。它在病原体过滤、免疫细胞生成和炎症反应调节方面的多方面作用使其成为抵御感染的重要守护者。鉴于肝脏的核心作用,认识到肝脏健康对整体免疫功能的重要性至关重要。通过健康的生活方式选择和早期干预肝脏疾病来保护肝脏,可确保这一重要器官能够继续保护我们免受每天面对的无数病原体的侵害。
摘要 自 1977 年赞比亚首次报告霍乱疫情以来,霍乱一直是赞比亚面临的持续公共卫生挑战。最近的疫情始于 2023 年 10 月,截至 2024 年 6 月仍在持续,是赞比亚历史上最严重的疫情,也是 2022-2024 年南部非洲霍乱疫情的一部分,该疫情已影响到该地区的多个国家。本文介绍了此次疫情期间铜带省三个地区霍乱控制综合社区战略 (ICSCC) 的实施情况。ICSCC 是一种全面的、以社区为中心的公共卫生方法,整合了监测、病例管理、水、环境卫生和个人卫生干预、社区参与和感染预防措施。该战略的实施包括部署多学科技术团队,培训受影响社区的社区志愿者和医护人员。这种方法使霍乱病例和死亡率迅速减少,这主要归功于监测的加强、社区教育课程和卫生习惯的改善。 ICSCC 还改善了利益相关方的协调,并实现了快速沟通,以便对霍乱热点地区进行早期响应。主要经验教训包括强有力的协调、早期社区参与和针对具体情况的适应的重要性。该战略强调数据驱动的决策和适应当地社会文化动态,这对其有效性至关重要。这些发现强调了综合社区方法在管理霍乱疫情、增强公共卫生准备和建立长期复原力方面的潜力。ICSCC 战略为面临类似公共卫生挑战的地区提供了一个可扩展的模型,为政策制定者和从业者提供了关于社区参与管理公共卫生危机的有效性的宝贵见解。
量子随机数生成器 (QRNG) 承诺生成完全不可预测的随机数。然而,以随机模型形式对随机数进行安全认证通常会引入难以证明或不必要的假设。两个重要的例子是将对手限制在经典机制中以及连续测量结果之间的相关性可以忽略不计。此外,不严格的系统特性会打开一个安全漏洞。在这项工作中,我们通过实验实现了一个不依赖于上述假设的 QRNG,其随机模型是通过严格的计量方法建立的。基于真空涨落的正交测量,我们展示了 8 GBit/s 的实时随机数生成率。我们的安全认证方法提供了许多实际好处,因此将在量子随机数生成器中得到广泛应用。特别是,我们生成的随机数非常适合当今的传统和量子加密解决方案。
粘液是一种动态生物水凝胶,主要由糖蛋白粘蛋白组成,具有独特的生物物理特性,并形成保护细胞免受多种病毒侵害的屏障。在这里,这项工作开发了一种基于聚甘油硫酸盐的树枝状粘蛋白启发共聚物 (MICP-1),其中约 10% 的活性二硫化物重复单元作为交联位点。MICP-1 的低温电子显微镜 (Cryo-EM) 分析揭示了细长的单链纤维形态。MICP-1 对许多病毒表现出潜在的抑制活性,例如单纯疱疹病毒 1 (HSV-1) 和 SARS-CoV-2(包括 Delta 和 Omicron 等变体)。MICP-1 使用线性和支链聚乙二醇硫醇 (PEG-thiol) 作为交联剂,生产出具有与健康人痰液相似的粘弹性能和可调节微结构的水凝胶。使用单粒子跟踪微流变学、电子顺磁共振 (EPR) 和低温扫描电子显微镜 (Cryo-SEM) 来表征网络结构。合成的水凝胶表现出自修复特性,以及可通过还原调节的粘弹性能。使用 transwell 测定法来研究水凝胶对 HSV-1 病毒感染的保护特性。活细胞显微镜证实,由于网络形态和阴离子多价效应,这些水凝胶可以通过捕获病毒来保护底层细胞免受感染。总体而言,这种新型粘蛋白共聚物可生成数克级的粘液模拟水凝胶。这些水凝胶可用作富含二硫化物的气道粘液研究的模型,也可用作生物材料。
量子计算的新发展让人们担心当前的安全方法可能会被量子攻击破坏。一些数学问题很难解决,这就是 RSA 和 ECC 等传统加密方法保护其秘密的方法。然而,量子计算机可能能够比普通计算机更快地解决这些问题,这使得这些方法不那么安全。由于这种威胁,专家们一直在努力开发量子计算机无法破解的后量子加密方法。这些方法可以抵御量子算法的强度,即使在量子攻击者存在的情况下也能保护私人数据的隐私、完整性和有效性。基于格的加密是一种潜在的后量子加密方法。它的安全性来自某些格问题的难度。基于格的方法被认为可以免受传统计算机和量子计算机的威胁,因为它们提供了良好的安全保证。基于格的加密是一种构建不同类型加密原语的灵活方法,如加密、数字签名和密钥共享协议。基于代码的密码学研究是另一项重要进展,该研究基于解码某些纠错码的难度。基于代码的方法已经存在很长时间,并且已经进行了大量研究,这使它们成为继量子计算之后安全性的良好选择。基于代码的密码学也易于使用,并且具有强大的安全性,这使其成为现实世界情况的良好选择。多元多项式密码学是继量子计算之后的另一种可能的密码学选择。该方法的安全性取决于解决多元多项式问题系统的难度。多元多项式方法可能不如基于格或基于代码的密码学安全,但对于某些资源有限的情况和地方,它们是令人感兴趣的选择。
易失性存储器(如寄存器和 SRAM)是任何 CPU 或片上系统 (SoC) 不可或缺的部分。它们存储各种片上敏感资产,如加密密钥、中间密码计算、密码、混淆密钥和硬件安全原语输出。尽管此类数据应在断电后立即删除,但很容易受到冷启动攻击。冷启动攻击基于存储器的剩磁效应,即存储器内容在断电后不会立即消失;它们会随着时间的推移逐渐消失,在低温下会显著延长。可以通过重新启动正在运行的机器并读取存储器中剩余的内容来利用此效应。本文提出了一种延伸到失忆寄存器的自毁锁存器,当温度降至冰点时保护敏感数据。我们提出的锁存器可以感知此类攻击期间所需的温度下降,并通过进入禁止数据状态立即做出反应,擦除寄存器存储的数据。该设计使用基于 NULL 约定逻辑 (NCL) 的多态 NOR/NAND 门,该门的功能会随温度而改变。我们的结果表明,锁存器和寄存器在工艺变化过程中保持稳定,对攻击的响应度为 99% 和 80%。即使在 20% 的数据未被破坏的情况下,也有 9.5% 的数据会翻转其状态,使攻击者难以进行可靠的提取。由于多态机制易于实现,因此易于实现,并且仅使用一个栅极电压就可以轻松编程自毁行为的温度阈值。
如果问题得不到解决,成本将成倍增加,达到 100 美元,而纠正时间和延长的时间成本将变得更加可观。在相关背景下,主数据管理 (MDM) 的投资回报率研究始终显示有利的回报,强调了投资于早期预防和有效管理数据质量的价值。企业经常面临协调来自多个系统的同一公司数据的不同版本的挑战,这会产生重复和不连贯的数据。随着业务规模的扩大,数据领导者面临着提高自动化程度和降低数据管理复杂性的双重挑战。
³ ISO/IEC 27040:2024(第二版),信息安全 – 安全技术 – 存储安全 ⁴ IEEE 2883-2022,IEEE 存储清理标准 ⁵ 密钥大小、模数或曲线。⁶ 如 NIST 特别出版物 800-193《平台固件弹性指南》所述。⁷ 根据 NIST SP 800-193,信任根 (RoT) 是提供一项或多项安全特定功能(例如测量、存储、报告、恢复、验证和更新)的基础元素。RoT 通常只是信任链 (CoT) 中的第一个元素,可以作为此类链中的锚点,以提供更复杂的功能。
a) 哪些类型的行为者可能有兴趣在挪威选举的背景下进行信息影响?– 行为者 b) 这些行为者可以被认为具有哪些总体目标?- 目标 c) 行为者可以寻求对政治辩论产生什么影响以达到其目标?– 对公开辩论的影响 d) 行为者可以寻求影响哪些目标群体以实现其目标?– 目标群体 e) 行为者可以利用哪种类型的信息?– 信息类型 f) 可以使用哪种语言来传播/传播信息?- 语言 g) 可以在哪些平台上传播信息?– 平台 h) 行为者是公开还是秘密运作?– 透明度 i) 可以假设行为者从哪个时间范围开始运作?– 时间范围