牙龈卟啉单胞菌(P. gingivalis)是一种革兰氏阴性口腔厌氧菌,在牙周炎的发病过程中起关键作用。P. gingivalis表达多种毒力因子,破坏先天性和适应性免疫,使其在宿主体内存活、繁殖并破坏牙周组织。除了牙周病外,P. gingivalis还与全身性疾病有关,胰岛素抵抗是其中重要的病理基础。P. gingivalis引起全身炎症反应,破坏胰岛素信号通路,诱导胰腺b细胞功能减退和数量减少,导致胰岛素敏感性降低,从而产生胰岛素抵抗(IR)。本文系统综述了P. gingivalis引起胰岛素抵抗的机制研究,讨论了P. gingivalis与基于胰岛素抵抗的全身性疾病的关联,并最终提出了相关的治疗方法。总之,通过系统地综述牙龈卟啉单胞菌通过胰岛素抵抗引起全身性疾病的相关机制,我们希望为未来相关全身性疾病的基础研究和临床干预提供新的见解。
CRISPR-Cas9 介导的基因组编辑的第一步是切割与 CRISPR 向导 RNA (gRNA) 中所谓的间隔序列互补的目标 DNA 序列。然而,一些 DNA 序列对 CRISPR-Cas9 切割具有抵抗性,这至少部分是由于 gRNA 折叠错误造成的。为了解决这个问题,我们设计了 gRNA,使其恒定部分具有高度稳定的发夹结构,并通过化学修饰进一步增强了它们的稳定性。“基因组编辑优化锁定设计”(GOLD)-gRNA 将基因组编辑效率提高了约 1000 倍(从 0.08% 到 80.5%),其他不同靶标的平均效率提高了 7.4 倍。我们预计,无论间隔序列组成如何,这种改进的 gRNA 都将实现高效编辑,并且在所需的基因组位点难以编辑时将特别有用。
环境变化和人口增长是农作物生产和整个粮食安全的主要问题。为了解决这个问题,研究人员一直致力于改良谷物和豆类,并在本世纪初取得了相当大的进展。然而,如果没有蔬菜和水果,谷物和豆类加在一起不足以满足人类生活的饮食和营养需求。生产优质的蔬菜和水果极具挑战性,因为它们易腐烂、保质期短,而且在收获前后会遇到非生物和生物压力。通过引入外来基因来生产转基因作物,可以生产出优质、延长保质期和抗逆性、改变开花和果实成熟的时间的转基因作物,这种方法非常成功。然而,一些生物安全问题,如转基因异交风险,限制了它们的生产、营销和消费。现代基因组编辑技术,如 CRISPR/Cas9 系统,在这种情况下提供了一个完美的解决方案,因为它可以生产无转基因的转基因植物。因此,这些基因编辑植物可以轻松满足农作物生产和消费的生物安全规范。本综述重点介绍了 CRISPR/Cas9 系统在成功产生非生物和生物胁迫抗性方面的潜力,从而提高了蔬菜和水果的质量、产量和整体生产力。
CRISPR-Cas9 介导的基因组编辑的第一步是切割与 CRISPR 向导 RNA (gRNA) 中所谓的间隔序列互补的目标 DNA 序列。然而,一些 DNA 序列对 CRISPR-Cas9 切割具有抵抗性,这至少部分是由于 gRNA 折叠错误造成的。为了解决这个问题,我们设计了 gRNA,使其恒定部分具有高度稳定的发夹结构,并通过化学修饰进一步增强了它们的稳定性。“基因组编辑优化锁定设计”(GOLD)-gRNA 将基因组编辑效率提高了约 1000 倍(从 0.08% 到 80.5%),其他不同靶标的平均效率提高了 7.4 倍。我们预计,无论间隔序列组成如何,这种改进的 gRNA 都将实现高效编辑,并且在所需的基因组位点难以编辑时将特别有用。
通讯作者:Dimitrios Kapogiannis,医学博士,美国国家卫生研究院国家老化研究所,美国国家卫生研究院,251 Bayview Blvd,Ste 8C228,Baltimore,MD 21224,Kapogiannisnisd@mail.nih.nih.nih.nih.gov。*这些作者共享第一作者。±这些作者分享了高级作者资格作者声明Drs。Mansur和Kapogiannis可以完全访问研究中的所有数据,并负责数据的完整性和数据分析的准确性。Concept and design: Mansur, Lee, Rosenblat, Brietzke, Suppes, McIntyre, Kapogiannis Acquisition, analysis, or interpretation of clinical data: Mansur, Subramaniapillai, Lee, Iacobucci, Rodrigues, Cosgrove, Kramer, Suppes, McIntyre Acquisition, analysis, or interpretation of biomarker data: Mansur, Delgado-Peraza, Chawla, Nogueras-Ortiz, McIntyre, Kapogiannis Drafting of the manuscript: Mansur, Delgado-Peraza, McIntyre, Kapogiannis Critical revision of the manuscript for important intellectual content: Rosenblat, Brietzke, Suppes, Raison, Fagiolini, Rasgon Statistical analysis: Mansur Obtained funding: Mansur,McIntyre,Kapogiannis行政,技术或物质支持:Subramaniaiaiapillai,Lee,Cosgrove,McIntyre,Kapogiannis,Kapogiannis监督:McIntyre,Kapogiannis
弧形菌根真菌(AMF)可能会对牧场的生态系统弹性和入侵分析产生深远的影响。通过生态反馈机制维护植物群落结构,例如促进营养循环和寄主植物吸收,物理和化学对土壤结构稳定性的贡献,植物竞争的介导表明,AMF可能是压力大干旱环境中的重要促进者。植物-AMF相互作用可能会通过提高本地植物群落社区对干旱,放牧以及对异国植物入侵的抵抗力而影响继承。然而,侵入性的外来植物可能会从与本地AMF社区的关联以及Alter的关联中受益。此外,问题仍然存在于AMF在压力环境中的作用,特别是鼠尾草的菌根依赖性(Artemisia spp。)草原植物。在这里,我们审查了与牧场中与AMF相关的科学文献,特别关注土地管理,干扰和入侵对Sagebrush Steppe中AMF社区的影响。我们强调了与牧场有关的AMF生态学的含义,并讨论了用于测量菌根反应的方法。我们的审查发现了令人信服的证据表明,AMF对干扰和对入侵的抵抗力的适应能力随植物和真菌群落组成而有所不同,包括植物菌根的宿主状况,植物功能行为以及生理适应植物和真菌的干扰。我们通过概述了一个框架来提高对牧场入侵生态的AMF知识的框架。了解AMF在半干旱的Sagebrush草原生态系统中的作用可能需要多种研究方法,因为植物AMF相互作用的高度可变性质,弹性会议的复杂机制以及未知的阈值 - 对环境压力的响应。这可能需要从植物生物量范式中转移到评估菌根的好处,以便在Sagebrush Steppe和其他半干旱生态系统中获得对植物对AMF或缺乏植物的依赖性的更全面看法。©2019范围管理协会。由Elsevier Inc.发布的所有权利保留。
通讯作者:Dimitrios Kapogiannis,医学博士,美国国家卫生研究院国家老化研究所,美国国家卫生研究院,251 Bayview Blvd,Ste 8C228,Baltimore,MD 21224,Kapogiannisnisd@mail.nih.nih.nih.nih.gov。*这些作者共享第一作者。±这些作者分享了高级作者资格作者声明Drs。Mansur和Kapogiannis可以完全访问研究中的所有数据,并负责数据的完整性和数据分析的准确性。Concept and design: Mansur, Lee, Rosenblat, Brietzke, Suppes, McIntyre, Kapogiannis Acquisition, analysis, or interpretation of clinical data: Mansur, Subramaniapillai, Lee, Iacobucci, Rodrigues, Cosgrove, Kramer, Suppes, McIntyre Acquisition, analysis, or interpretation of biomarker data: Mansur, Delgado-Peraza, Chawla, Nogueras-Ortiz, McIntyre, Kapogiannis Drafting of the manuscript: Mansur, Delgado-Peraza, McIntyre, Kapogiannis Critical revision of the manuscript for important intellectual content: Rosenblat, Brietzke, Suppes, Raison, Fagiolini, Rasgon Statistical analysis: Mansur Obtained funding: Mansur,McIntyre,Kapogiannis行政,技术或物质支持:Subramaniaiaiapillai,Lee,Cosgrove,McIntyre,Kapogiannis,Kapogiannis监督:McIntyre,Kapogiannis
。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经Peer Review的认证)提供的,他已授予Biorxiv的许可证,以在2023年12月20日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2023.12.12.18.572273 doi:biorxiv Preprint
最初发表于:曼努埃尔的加多; tsaousidou,伊娃; Bornstein,Stefan R;尼古拉斯(2024)。基于性别的胰岛素抵抗差异。内分泌学杂志,261(1):E230245。doi:https://doi.org/10.1530/joe-23-0245
包括包括:(1)C9ORF72六核苷酸载体(“ C9POS”),(2)对ALS相关的遗传变体和(3)IntermedMedMediepent Lengent Regent Legents cagnucletiers at actx Atxn的结果,总共包括113个健康对照和212个具有ALS的遗传分层个体:(1)C9ORF72六核苷酸载体(“ C9POS”),(2)偶发测试的患者。絮凝叶(p adj = 0.014,95%ci-5.06e-5至 - 3.98e-6)和crura(p adj = 0.031,95%ci-1.63e-3至 - 1.63e-3至 - 5.55e-5)在基线的基线患者的基线减少。小脑额和小脑结构连通性障碍,并且在零星患者中,这两种投影随着时间的流逝而进一步恶化(P ADJ = 0.003,T(249)= 3.04 = 3.04和P AXJ = 0.05,T(249),T(249),T(249)= 1.93)。基线零星患者的功能性小脑解偶联(P ADJ = 0.004,95%CI -0.19至-0.03)。ATXN2患者在基线时表现出脑部 - 枕骨功能连通性的降低(P ADJ = 0.004,95%CI-0.63至-0.06),进行性脑静脉内暂时性功能断开连接(P ADJ = 0.025,T(199)= -2.26)= -2.26),pecl = 0.0 7 (249)= - 2.24)。C9POS患者表现出进行性腹侧齿状萎缩(P ADJ = 0.007,t(249)= - 2.75)。CSTS(p adj <0.001,95%CI 4.89E-5至1.14E-4)和跨卡盘间纤维纤维(P ADJ <0.001,95%CI 5.21E 5.21E-5至1.31E-4)在C9POS和基线的效果均高于4次,比4次高于4时间。CST和callosum callosum完整性的下降速度快于脑脑断开连接的速度(P ADJ = 0.001,T(190)= 6.93)。