处理过时的软件已成为包括开源行业在内的各个行业的紧迫问题。本期为软件工程研究人员提供了机会,有机会适应传统的程序分析技术,以应对重构和现代化挑战。生成AI的进步已经为代码生成,翻译和错误修复以及其他任务开辟了新的途径。公司渴望探索可扩展的解决方案,以进行自动测试,重构和代码生成。本教程旨在提供旧软件现代化的概述,并在AI辅助软件和生成AI的兴起中强调了其意义。它将讨论由整体遗产代码和系统引起的行业挑战,引入建筑范式以现代化的老化软件,并突出需要注意的研究和工程问题。Daniel Thul等人,Xue Han等人,Daiki Kimura等人,Oytun Ulutan等人和Shivali Agarwal等人的研究论文。展示了解决旧软件现代化的重要性。这项工作有可能推动软件工程的创新,使IBM这样的公司能够开发最先进的解决方案。IBM研究在过去一年中在AI,量子计算,半导体和基本研究方面取得了长足的进步。该组织在全球12位实验室中的3,000名研究人员推动了科学领域的界限,并设想了以前似乎不可能的计算和扩展思想中的新可能性。我们的开发路线图将使我们走向这一未来。在过去的一年中,IBM研究在革新企业内的AI能力方面发挥了关键作用。就像AI在短时间内在我们的日常生活中深深地根深蒂固一样,世界上大多数有价值的业务数据仍然锁定在无法访问的格式中,例如PDF和电子表格。在2024年,IBM Research领导了该公司主要AI发行的指控,该公司旨在满足拥有数百万最终用户的企业。亮点之一是在五月的Think上推出了TruxStlab,这是一个开源项目,通过启用新知识和技能的协作添加来简化微调LLM。IBM Research和Red Hat之间的这种合作导致了Red Hat Enterprise Linux AI的功能强大的工具。TenchERTLAB脱颖而出,因为其能够允许全球社区创建和合并更改LLM的能力,而无需从头开始重新培训整个模型。此功能使全球人们更容易找到使用LLMS解决复杂问题的创新方法。此外,IBM Research还使用TerchandLab改善了其开源花岗岩模型,该模型随后于10月发布。在IBM Research的数据和模型工厂中设计和培训了新的花岗岩8B和2B模型。这些企业级模型的执行方式类似于较大的基础模型,但对于诸如抹布,分类,摘要,实体提取和工具使用的企业至关重要的任务成本的一小部分。在12月,IBM发布了其花岗岩3.1型号,每种型号的上下文长度为128K。经过超过12万亿代币的高质量数据培训,这些模型对其数据源具有完全透明的开源。花岗岩3.1 8b指示模型显着提高了其前身的性能改进,并在其同行中占据了拥抱面孔OpenLLM排行榜基准的平均得分之一。此外,IBM发布了一个新的嵌入模型系列,这些模型提供了12种语言的多语言支持,类似于它们的生成性。作为较早的Granite 3.0发射的一部分,Granite Guardian也是开源的。这使开发人员可以通过检查用户提示和LLM的响应来实施安全护栏,以了解社交偏见,仇恨言论,毒性,亵渎,暴力等风险。我们继续使用AI模型来推动界限,尤其是与抹布技术配对时。这种组合使我们能够评估背景相关性,回答相关性和扎根。我们的最新花岗岩3.1型号是8B强大的巨头,可提供无与伦比的风险和损害检测功能。我们还升级了我们的花岗岩时间序列模型,该模型以十倍的利润优于更大的模型。这些进步对于试图根据历史数据准确预测未来事件的企业尤为重要。与传统的LLM不同,我们的花岗岩TTM(TinyTimemixers)系列提供紧凑而高性能的时间序列型号,现在可以在Beta版本的Watsonx.ai的时间表预测API和SDK的Beta版本中提供。这个新的8B代码模型还具有对代理功能的支持。我们相信,我们的开源社区在这些模型中看到了价值,迄今为止,拥抱面孔的下载量超过500万。我们的下一代代码助理,由花岗岩代码模型提供支持,为C,C ++,GO,Java和Python等语言提供通用编码帮助。除了我们的内部软件开发管道改进外,在某些情况下增强了90%的增长,Granite代码模型现在还通过Instana,Watsonx Struckestrate和Maximo等产品中的产品,业务和行业4.0自动化为新的用例,为新的用例提供了动力。我们的花岗岩型号现在可以在包括Ollama,LM Studio,AWS,Nvidia,Google Vertex,Samsung等的各种平台上使用。建立在花岗岩3系的成功基础上,我们正在努力实现一个未来,AI代理可以通过称为Bee的开源框架可以轻松地解决业务需求。这使代理商可以快速开发业务应用程序。与美国国家航空航天局合作开发的气候和天气模式,用于跟踪重大的环境问题,例如西班牙的洪水破坏,亚马逊森林砍伐以及美国城市的热岛。我们很自豪地庆祝由IBM和META共同创立的AI联盟一年,旨在推动开放和负责的AI开发。该计划已发展为23个国家 /地区的140名成员,为负责任的模型,AI硬件和安全计划组成工作组。随着对AI的需求的增长,很明显,传统的CPU和GPU正在努力与这些模型的复杂性保持同步。我们需要创建从一开始设计的新设备,以有效地处理AI需求。IBM在半导体和基础设施中揭示了2024年在半导体和基础设施研究团队中发生的一些重大突破,重点是规模。8月,IBM揭开了Spyre,这是一种新的AI ACELERATOR芯片,用于子孙后代的Z和Power Systems,灵感来自AIU原型设计和Telum Chip的工作。这一突破是在意识到AI工作流程需要极低的AI推断后的突破。spyre具有32个单独的加速器芯,并包含使用5 nm节点工艺技术生产的14英里电线连接的256亿晶体管。芯片设计为聚集在一起,为单个IBM Z系统添加了更多的加速器核。与Spyre一起,企业可以在Z上部署尖端的AI软件,同时受益于IBM Z的安全性和可靠性。IBMResearch也一直在探索更有效地服务模型的方法。去年,该团队推出了其脑启发的AIU Northpole芯片,该芯片将记忆和加工单元共同取消,拆除了Von Neumann瓶颈。今年,在Northpole的硬件研究人员与AI研究人员之间的合作中,该团队使用Northpole用于生成模型创建了一个新的研究系统。该团队的潜伏期低于1毫秒的延迟,比下一个节能的GPU快了近47倍,而能量却减少了近73倍。另一个重大突破是在共包装光学领域的。此设备可以在硅芯片边缘的高密度光纤束,从而可以通过聚合物纤维进行直接通信。IBM Research Semiconductors部门中的一个团队生产了世界上第一个成功的聚合物光学波导,将光学的带宽带到了芯片边缘。该团队证明了光通道50微米的音高的可行性,这比以前的设计尺寸减少了80%。IBM研究人员在芯片设计和制造方面取得了重大突破。 他们开发了一种使用250微米螺距的新设备,该设备可能会缩小至20-25微米,从而大大增加带宽。 这项创新可能会导致AI模型的更快培训时间,并有可能节省能源,等同于每年为5,000个美国房屋供电。 此外,IBM的团队在缩小晶体管和使用Rapidus技术的2纳米过程设备方面取得了进步。 他们通过2纳米工艺成功构建了芯片,可以进行复杂的计算而不会过多的能耗。 这些突破增强了纳米片多VT技术,以替代当前的FinFET设备。 团队还使用高NA EUV系统从事EUV光刻,这使设计高性能逻辑设备可以扩展纳米片时代,并使未来垂直堆叠的晶体管超过1 nm节点。 IBM已经证明了降至21 nm螺距的线条的金属化,从而使铜达马斯斯互连的集成能够继续进行。 这些创新不仅是研究的努力;它们将变成可以大规模部署以解决实际业务问题的产品。IBM研究人员在芯片设计和制造方面取得了重大突破。他们开发了一种使用250微米螺距的新设备,该设备可能会缩小至20-25微米,从而大大增加带宽。这项创新可能会导致AI模型的更快培训时间,并有可能节省能源,等同于每年为5,000个美国房屋供电。此外,IBM的团队在缩小晶体管和使用Rapidus技术的2纳米过程设备方面取得了进步。他们通过2纳米工艺成功构建了芯片,可以进行复杂的计算而不会过多的能耗。这些突破增强了纳米片多VT技术,以替代当前的FinFET设备。团队还使用高NA EUV系统从事EUV光刻,这使设计高性能逻辑设备可以扩展纳米片时代,并使未来垂直堆叠的晶体管超过1 nm节点。IBM已经证明了降至21 nm螺距的线条的金属化,从而使铜达马斯斯互连的集成能够继续进行。这些创新不仅是研究的努力;它们将变成可以大规模部署以解决实际业务问题的产品。例如,IBM Spyre已经可用,将是下一代IBM Power 11的组成部分。AIU Northpole和共包装的光学设备在加拿大Bromont的IBM设施进行了测试和硬化。IBM量子通过整合量子和经典系统来解决复杂问题,从而加速其对混合计算的愿景。今年,该公司在推进其可扩展故障量量子计算机的路线图方面取得了长足的进步。在量子开发人员会议上,IBM展示了其进度,包括从高达5,000台门的运营中获得了苍鹭量子电路的精确结果。揭幕了一种新的,改进的苍鹭芯片,拥有156吨和出色的性能,错误率下降到8x10^-4。此外,IBM在创新方面取得了重大进步,包括使用Crossbill和L-COUPLER的M耦合器与火烈鸟的开发。这些突破使量子计算机更接近可扩展性和容忍性。此外,Qiskit V1.0是作为稳定版本发布的,巩固了其作为世界上最出色的量子软件开发套件的位置。此版本提供了改进的稳定性,并为Qiskit的60万开发人员提供了更长的支持周期。此外,还编译了一个名为Benchpress的基准集合,以准确演示Qiskit的性能。在针对其他量子软件(包括TKET,BQSKIT和CIRQ)的基准测试测试中,Qiskit在性能方面出现了明确的赢家,完成了比任何其他量子SDK的测试。IBM对创新的承诺可以追溯到80年前的成立。平均而言,在移动电路时,Qiskit的速度比TKET少54%。我们的软件工具集<div> Qiskit已经超越了性能SDK,以支持运行实用程序尺度量子工作负载的整个过程。这包括编写代码,后处理结果以及两者之间的所有内容。该工具集现在涵盖执行大规模工作负载所需的开源SDK和软件中间件。Qiskit Transpiler服务,更新的Qiskit Runtime Service,QISKIT AI Code Assistan Service,Qiskit Serverless和Qiskit功能等新功能使用户能够在更高的抽象级别访问高性能的量子硬件和软件。Qiskit功能,特别是将量子计算带给更广泛的受众群体的潜力。这是一项编程服务,允许用户在导入功能目录并传递其API令牌后,在IBM量子处理器和IBM Cloud上运行工作负载。该服务应用错误抑制和缓解措施,然后返回结果。通过结合软件和硬件突破,我们制作了以量子为中心的超级计算的第一个真实演示。我们与Riken合作发表了一篇论文,将此范式定义为超级计算,可以优化跨量子计算机和高级经典计算簇的工作。在我们的实验中,我们使用了多达6,400个fugaku超级计算机的节点,以帮助IBM Heron QPU模拟分子氮和铁硫簇。我们有信心,如果我们与古典HPC社区合作,我们可以在未来两年内实现量子优势。由于以量子为中心的超级计算出现,我们设想在一些最难的计算任务中协助经典计算机(反之亦然)的量子计算机。当前的加密方法取决于计算机将大数字分为主要因素的困难,随着数字的增长,这变得越来越具有挑战性。计算机科学家认为,研究人员已经证明,一台复杂的量子计算机可以通过应用Shor的算法在几个小时内破解RSA-2048加密,这对于计算机对于能够将大于2048位的数字的计算值至关重要。为了解决这一问题,IBM Research开发了三种新的数字签名算法-ML-KEM,ML-DSA和SLH-DSA,它们已被NIST接受竞争。为了确保平稳过渡到后量子后时代,IBM量子安全团队创建了一个用于网络弹性的路线图。这涉及了解组织的加密格局,确定需要更换的领域以及分析依赖性。企业可以使用诸如IBM量子安全探险家之类的工具来发现加密文物,生成密码材料清单(CBOM)并分析相关漏洞。IBM还为几项国家级计划做出了贡献,包括日本的Rapidus项目,该计划旨在使用芯片和高级包装以及AI驱动的Fab Automation开发2 NM芯片。此外,IBM与几个国家合作,以帮助他们确保其计算未来。在瑞士,IBM与Phoenix Technologies合作,在其位置安装了端到端的云AI超级计算机。该系统能够从数十个gpus扩展到数十个GPU,并具有IBM突破,例如基于IBM存储量表的灵活的基于RDMA的网络和高性能存储系统。使用OpenShift容器平台和OpenShift AI构建了云本地AI平台,可根据需要提供对WATSONX.AI的访问。IBM设置为全球主权AI Cloud Solutions的动力,从Kvant AI开始,该解决方案旨在提供特定于行业的AI应用程序。该公司还将通过投资其Bromont设施来加强与加拿大和魁北克政府的合作伙伴关系,从而巩固北美芯片供应链的未来。此外,IBM半导体研究导致了纳米片技术和2 nm节点等突破,并且新的NSTC EUV加速器将位于Albany Nanotech综合体。IBM还通过开设其在欧洲的第一个量子数据中心并与Riken合作安装IBM量子系统两个,从而在全球扩展量子计算。该公司还将IBM系统带到韩国和法国,同时与西班牙,沙特阿拉伯和肯尼亚等政府合作开发特定语言的AI模型并监视造林工作。托马斯·沃森(Thomas Watson)认为,从制表机,尺度和打孔时钟的早期,投资研究的价值。IBM继续发现新的想法和设计工具,以满足不断变化的行业需求,从而巩固了其作为计算领域的领导者的地位。 这个开创性的研究机构致力于推动现代科学的界限并取得渐进的进步。IBM继续发现新的想法和设计工具,以满足不断变化的行业需求,从而巩固了其作为计算领域的领导者的地位。这个开创性的研究机构致力于推动现代科学的界限并取得渐进的进步。IBM研究:八十年前的科学突破的遗产,哥伦比亚大学教授华莱士·埃克特(Wallace Eckert)领导了沃森科学计算实验室IBM Research成为前身的建立。在1956年,IBM建立了一个专门的研究部门,到本世纪末,他们需要更多的空间来探索迅速发展的计算世界。我们通过在我们的思想实验室中构建创新的解决方案来启动我们的旅程,以塑造计算的未来。在这里,研究人员与来自不同背景的专业人员合作,以解决看似不可能的项目。我们的内部工具(如花岗岩模型)被用来增强我们的产品,而代理框架为Qiskit供电代理。最近的合作导致了加速的发现,回应了托马斯·沃森(Thomas Watson)80年前的开拓精神。我们应对未来80年的挑战时,下一章的创新就在未来。
**简介** 本技术手册提供重型扩展机动战术卡车 (HEMTT) 型号 M1120、M1120A2 和 M1120A2R1 的操作说明、维护检查和服务。 **主要内容** 本手册分为几个部分,包括: * 操作说明 * 操作员/机组人员预防性维护检查和服务 * 组织维护说明 * 直接支持和一般支持维护 * 参考 **安全警告** 本手册包含几条警告以确保安全操作车辆。这些包括: * 警告不要在没有合适的起重设备的情况下抬起或移动主框架,因为它重达 1,000-2,500 磅。 * 警告移动 CROP 时要远离它,以防止严重伤害或死亡。 * 警告在组装过程中不要将手指或手放在支柱的前半部分和后半部分之间,因为它们可能会被夹住。 * 警告,在 LHS 上安装前,请确保前升降适配器上没有雪、冰和泥,因为它可能会不平衡。 * 警告,在安装过程中用起重装置支撑钩臂。 **关键文件** 该手册包括几个关键文件,包括: * 维护分配图表 (MAC) * 维修零件和专用工具清单 (RPSTL) * 制造项目的图解清单 * 扭矩限制 * 强制更换零件总体而言,本技术手册提供了操作、维护和修理 HEMTT 车辆的基本信息。 可能损坏设备并造成严重人员伤害。确保在降低时不要让下部集装箱锁接触集装箱。如果这样做,吊钩将释放集装箱,导致其掉落并使前升降适配器失灵。这可能会导致严重伤害甚至死亡。警告收起滑块时,请勿抓住滑块的前部。您的手和手指可能会被夹在滑块和硬升降支架之间,从而导致严重伤害。警告使用 LHS 时,请让操作员、物体和其他人远离,否则可能会造成严重伤害或死亡。警告在开始装载序列之前,请勿按下手刹,否则可能会损坏设备。警告在解锁前,请确保释放 LHS 挂钩和前升降适配器之间的所有张力。解锁前升降适配器时请远离它,因为它可能会突然从容器中松脱。这可能会导致严重伤害甚至死亡。警告仔细检查容器是否已正确接触后滑块并位于导轨内。否则,您可能会面临严重的人身伤害、死亡或设备损坏。警告集装箱的最大重量为 24,000 磅(10,886 千克)。警告装载集装箱时,侧坡度不得超过 30%,否则可能会导致设备损坏或严重伤害甚至死亡。警告请记住,除非设备被牢固地挡住,否则切勿在设备下方爬行。设备可能会掉落并造成严重伤害。警告切勿在 LHS NO TRANSIT 指示灯亮起时行驶。这意味着负载没有完全收起,如果松脱,您可能会面临严重伤害甚至死亡。警告不要使用燃料清洁零件——它非常易燃,如果着火可能会导致严重烧伤。警告切勿焊接或切割 CARC 涂层材料——当杆移入或移出时,油会从气缸歧管端口喷出。用布盖住端口以防止油喷出,因为这可能会导致受伤。警告直接接触时,未固化的硅酮密封胶会刺激眼睛。如果它粘在皮肤上,请擦拭掉并用水冲洗。如果它进入您的眼睛,请用水冲洗并寻求医疗帮助。警告手动卸载时,请远离平板架和吊钩区域——如果不小心,可能会受伤。警告在装载或卸载循环之前和期间,请远离 LHS 和平板架——可能会导致严重伤害或死亡。警告轨道运输支柱重 60 磅(27 千克)。安装或拆卸时请寻求队友的帮助,以避免潜在的伤害。警告后导轨组件重 70 磅(32 千克)。请安装起重装置以防止发生事故。警告始终遵守规则和准则,以确保您和他人的安全。**警告**后滚轮组件重约 375 磅(170 千克),需要合适的起重装置进行拆卸或安装,以防止受伤。**警告**后滚轮支架重 150 磅(68 千克),也需要起重装置以避免潜在的伤害。拆卸一个后滚轮支架时,确保另一个支架得到支撑。取下所有首饰,包括戒指、狗牌和手镯,因为接触正极电路可能会导致设备损坏或人员受伤。右前支撑支架重 98 磅(44 千克),需要起重装置才能安全搬运。**警告**螺丝非常烫;处理时请戴上防护手套,以免严重烧伤。滑动臂重 65 磅(29 千克),滑块重 142 磅(64 千克)。两者都需要合适的起重设备。**警告** 使用喷枪溶剂时,请在带过滤器的喷漆室内操作并戴上面罩。不遵守规定可能会导致人员受伤。联邦供应分类组 (FSCG) 的前两位数字称为联邦供应组 (FSG),而后两位数字代表联邦供应类 (FSC)。使用完整的 4 位 FSCG 编号进行 FSC 搜索。商业和政府实体 (CAGE) 代码是分配给各政府机构供应商的五位字母数字标识符。《预防性维护月刊》是自 1951 年 6 月以来出版的一系列美国陆军技术公告,以漫画风格的艺术来说明正确的预防性维护方法。**警告**一氧化碳无味无色,但会导致死亡。吸入含有一氧化碳的空气会产生头痛、头晕、肌肉失去控制等症状,嗜睡感和昏迷。严重接触可能会导致脑损伤或死亡。操作人员加热器或车辆发动机时,必须采取预防措施以确保机组人员安全。请遵循以下准则:1. **切勿**在没有适当通风的封闭空间内操作人员加热器或车辆发动机。2. **切勿**在拆下检查板、盖板或发动机舱盖的情况下驾驶任何车辆,除非出于维护目的而需要。3. 车辆行驶期间,始终**警惕**尾气气味和接触症状。如果出现其中任何一种情况,请立即通风人员舱。如果症状持续,请将受影响的机组人员转移到新鲜空气处并保持温暖。请勿允许进行体育锻炼。如有必要,进行人工呼吸并立即就医。**请注意**气体微粒过滤装置或核生物化学防护的野外防护面罩将无法提供任何针对一氧化碳接触的保护。使用粘合剂、溶剂和密封剂时需要小心,因为它们容易燃烧、释放有害蒸汽,并导致皮肤和衣物受损。必须将这些材料远离明火,并在通风良好的地方使用,以避免受伤或死亡。此外,在处理设备(如集装箱处理单元 (CHU))时还必须采取其他几项安全预防措施,包括在使用 CARC 涂料时佩戴空气管路呼吸器、注意暴露症状以及采取措施防止蒸汽清洁造成损坏。警告:确保靠近灭火器并遵循 TC 9-237 指南。**小心安装卡簧**,因为它们在张力下会像抛射物一样。**小心拆卸弹簧**,因为如果意外松开,它们可能会造成伤害。**使用前升降适配器时要小心**,因为它可能会在未连接到集装箱的情况下意外摆动。不遵守规定可能会导致严重伤害或死亡。 **装载集装箱时**,重心会向上并向卡车后部移动,因此在转弯、上坡或下坡时需要格外小心。不小心可能会导致严重伤害或死亡。**在不平坦的地面(坡度高达 5 度,下坡高达 20%)上装载或卸载集装箱时,根据需要使用卡车服务制动器,以防止滚落或严重伤害/死亡**。**在不平坦的地面(坡度或下坡高达 5 度)上装载或卸载平板车时,根据需要使用卡车服务制动器,以防止滚落或严重伤害/死亡**。**使用 M10-76 拖车操作 M11-20 卡车时,始终将最重的平板车装载到卡车上**,因为装载不当可能会导致不良操作和/或制动,从而造成伤害或死亡。**支架重 120 磅(54 千克)。安装/拆卸前请连接合适的起重设备,以防止可能的伤害**。**CARC 涂料含有异氰酸酯 (HDI),可引起皮肤刺激、呼吸问题和其他症状。为避免与接触相关的健康风险:** * **使用 CARC 涂料时务必使用空气管路呼吸器**,除非空气采样显示接触量低于标准。 * **注意 CARC 涂料接触症状**;如果出现症状,请立即就医。 * **请勿在未使用高效空气净化呼吸器的情况下研磨或打磨涂漆设备**。 * **佩戴防护装备(手套、通风面罩、护目镜等)**保护皮肤和眼睛免受 CARC 涂料接触**。通风:切勿焊接或切割 CARC 涂层材料,因为这可能导致有害烟雾和火花造成严重伤害或死亡。操作设备前务必检查架空电线,因为接触电线可能会导致严重后果。在提升 LHS、ISO 集装箱或 FRS 等重物时,确保地面坚固平整,并避免可能导致不稳定的陡峭斜坡。使用压缩空气进行清洁时,请将其保持在 30 psi 以下以防止发生事故。此外,切勿低估压缩框架(800 磅)、CROP(3,800 磅)、横梁组件(530 磅)或气缸(超过 210 磅)的重量,并在移动起重设备之前务必固定好它们。请记住,不遵守正确的程序可能会导致严重伤害甚至死亡。此外,处理涂有 CARC 涂料的设备时要小心,因为皮肤接触可能会很危险。断开或连接连接器和软管时,切勿进入 LHS 下方,因为液压故障可能会导致其突然下降。使用 CARC 涂层材料时,务必佩戴手套、通风面罩、护目镜等防护装备。将挡块放置在容器下方时,避免将手、手臂或任何身体部位放在容器下方,因为这可能会导致受伤或死亡。最后,装载 FRS 或集装箱时切勿降低轮胎压力,因为高速公路上前轮和后轮的轮胎压力分别为 60 psi 和 83 psi,这是为了防止损坏和确保安全操作所必需的。**操作手册:负载处理系统,重型扩展机动卡车 (HEMTT)** 本手册提供有关维护和修理 HEMTT 型号 M1120A2R1(美国陆军使用的战术卡车)的技术指导。本手册分为几个部分,涵盖操作员支持、组织和直接支持维护。 **重要安全预防措施** 在开始对车辆进行操作之前,操作员必须了解潜在的危险,包括:* 避免站在前升降适配器和容器之间,以防止发生事故* 在使用 CARC 涂料时,请注意通风* 切勿在仅由千斤顶或起重机支撑的物体上工作,而不要使用垫块或适当的支架**特定溶剂的安全预防措施** 使用干洗溶剂(例如 PD-680)时,需要采取特殊预防措施,以避免接触。操作员必须佩戴护目镜、面罩和手套,并在通风良好的区域工作。**重量注意事项**操作员应注意,车辆上的某些部件(例如支柱支架组件和横支架)很重,如果处理不当,可能会造成受伤风险。**铁路运输注意事项**通过铁路运输 HEMTT 时,操作员必须确保在卸货前松开铁路运输锁定销,以防止损坏或事故。警告确保平板架滑轨正确接触 LHS 后滚轮,以防止人员严重受伤或死亡以及设备损坏。否则可能会造成灾难性的后果。警告确保在转移前对拖车空气系统加压,因为如果没有加压,平板架锁可能无法正确接合/分离,从而造成严重受伤或死亡的风险。警告高压清洗会产生危险的噪音和灼伤可能性,因此必须保护眼睛、皮肤和耳朵。不遵守规定可能会导致人员受伤。第 15 页警告前横梁组件重约 500 磅(227 千克),必须小心处理,以防止可能对人员造成伤害。搬运前应安装合适的起重设备。警告前升降适配器和挂钩重 1,750 磅(794 千克),需要安全的拆卸或安装程序,以避免发生事故。在安装或拆卸前升降适配器到 LHS 钩臂钩时,请保持距离。警告前升降适配器重 1,600 磅(726 千克),应小心处理,以防止可能对人员造成伤害。搬运前必须安装合适的起重设备。警告散发有害蒸气,很滑,可能会导致跌倒。为避免受伤,请用抹布擦去溢出的燃油或油。远离明火并在通风良好的区域使用。如果粘合剂、溶剂或密封剂沾到皮肤或衣服上,请立即用肥皂和水清洗。警告将容器导轨安装到滑块中时,手可能会被夹住。握住容器导轨板的外边缘,避免容器导轨和滑块之间被夹住。警告钩臂缸重 210 磅(95 千克),必须小心操作,以防人员受伤。在拆卸或安装前,应安装合适的起重设备。警告燃料和油是有害蒸汽,可能会导致跌倒。为避免受伤,请用抹布擦去溢出的燃料或油。远离明火并在通风良好的地方使用。如果粘合剂、溶剂或密封剂粘到皮肤或衣服上,请立即用肥皂和水清洗。本手册中的更改通过页边空白处的竖线表示。插图的细微变化有一个微型指针,而新的或修订的插图旁边有一个竖线。插入和移除页面如下: AC/D 空白: AC/D 空白 1-5 至 1-8: 无 1-9 至 1-14: 1-9 至 1-14 2-1 和 2-2: 无 2-7 至 2-16:2-19 至 2-30:2-33 至 2-36:2-39 至 2-42:2-45 至 2-56:2-59 至 2-62:2-65 至 2-68:2-71 至 2-80:联邦供应分类组的前两位数字为联邦供应组,后两位数字为联邦供应类别。FSC 搜索使用完整的四位数字。商业和政府实体代码是分配给政府机构供应商的五位标识符。《预防性维护月刊》是美国陆军自 1951 年 6 月以来出版的一系列技术公告。它以漫画书风格为特色,介绍了正确的预防性维护方法。技术手册 TM 9-2320-304-14&PfChange 1 包含警告: - 钩臂重 1,100 磅,需要使用起重装置以防止受伤。 - 水平滚轮重 75 磅,在拆卸或安装前需要使用起重装置。 - 液压油处于压力之下,断开液压管路时需要关闭发动机。 - 软地面可能需要为前升降适配器使用顶升板。 - 应检查过载指示器,如果分布不均或超过 24,000 磅,则必须重新分配或减少有效载荷。警告:需要小心处理 LHS 在负载脱离期间,人员必须与平板货架和链条后部保持安全距离,因为它们可能承受很大的张力,导致受伤或死亡。同样,在提升或降低设备时,请清理设备周围的区域,以避免发生事故。 * 每个 FSCG 代码的前两位数字代表联邦供应集团 (FSG),而后两位数字代表联邦供应类别 (FSC)。 * 使用完整的四位 FSCG 编号进行 FSC 搜索。 * 商业和政府实体 (CAGE) 代码是分配给各政府机构供应商的五位字母数字标识符。 * 《预防性维护月刊》是自 1951 年 6 月以来出版的一系列美国陆军技术公报,以漫画风格的艺术来说明正确的预防性维护方法。文本还包括各种 FSCG 代码的索引,按页码和类别(例如“A”、“B”、“C”等)组织。索引似乎指示哪些页面已被更新或替换。 2003 年 9 月....变更115 2001 年 9 月变更31 2004 年 10 月....本出版物的总页数为 1320,包括以下内容:页码/WP*修订版页码/WP*修订版页码/WP*修订版编号编号编号编号编号编号编号封面2空白2a-l1A-D3i3ii0iii1iv3v/(vi 空白)01-111-201-2.1/(1-2.2 空白)11-3 - 1-411-5 - 1-621-711-821-8.1/(1-8.2 空白)21-9 - 1-1121-1211-13 -- 1-1421-15/(1-16 空白)12-112-222-3 - 2-412-502-612-722-802-8.1 - 2-8.832-922-1032-11 - 2-1622-1712-1802-19 - 2-2222-2302-24 - 2-2622-2712-28 - 2-2922-30 - 2-3312-3422-34.1/(2-34.2空白)32-3522-3612-3702-3812-39 - 2-4022-4102-4222-43 - 2-4502-46 - 2-4922-50 - 2-5102-52 - 2-5322-5402-5522-56 - 2-5902-60 - 2-6122-62 - 2-6402-6522-6602-6722-68 - 2-7002-71 - 2-7422-7502-76 - 2-7822-7902-8022-810* 此列中的零表示原始页面。第25页联邦供应分类组(FSCG)的前两位数字称为联邦供应组(FSG)。 FSCG 的最后两位数字称为联邦供应类别 (FSC)。使用完整的四位 FSCG 编号进行 FSC 搜索。商业和政府实体 (CAGE) 代码是分配给各政府机构供应商的五位字母数字标识符。《预防性维护月刊》是美国陆军技术公报系列,自 1951 年 6 月起作为月刊出版,以漫画风格的艺术形式展示正确的预防性维护方法。第 26 页
美国国家医学图书馆 (NLM) 提供科学文献的访问权限,但不认可或同意其内容。相反,交叉污染对食品安全构成重大风险,需要有效的清洁和消毒方案,这些方案需要通过表面采样协议进行验证、监控和验证。单独使用视觉评估是无效的,但可以作为监测表面残留污染的综合方法的一部分。微生物和非微生物检测方法在检测表面污染方面的有效性进行了比较。非微生物评估方法(例如 ATP 测试)可有效监测残留的表面污垢,而传统的微生物方法可以指示残留的微生物污染,但不能指示表面污垢。分子微生物方法和生物发光测试的最新进展提供了改进的检测能力。没有单一的理想表面测试方法;采样方法应考虑指导方针、综合策略和趋势分析。清洁对于去除表面的“污垢”和保持各种环境中的清洁至关重要。人类的接受度和消费者行为在确定清洁标准方面起着重要作用。清洁的环境对于预防疾病至关重要,肮脏的环境会促进病原体的传播。在食品行业,充分清洁对于防止交叉污染至关重要,尤其是对于即食食品。然而,人类食物过敏原或食物腐败生物的痕迹也可能带来健康风险并影响产品的保质期,这凸显了有效的清洁实践在保持清洁和安全标准方面的重要性。食品生产场所的清洁:法律和财务要求食品生产场所的环境监测是确保食品质量和安全的一个重要方面。虽然食品加工商可能会进行环境采样,但一些州和国家为执法人员提供了如何有效开展此项活动的指南。适当的清洁不仅对于保持食品卫生至关重要,而且出于财务原因也至关重要。清洁不充分会导致设备故障、效率降低和成本增加。清洁通常是一项立法要求,欧盟在其关于食品卫生的法规 (EC No. 852/2004) 中对此进行了规定。英国零售商协会的全球食品安全标准规定了食品安全的最低标准,包括清洁和清洁程序的要求。该标准强调了评估清洁效果、定义可接受和不可接受的清洁度水平以及记录结果的重要性。不符合这些标准可能会给食品制造商带来重大经济损失。除了财务影响外,清洁不当也会导致食品接触表面微生物的生长。这些微生物对环境压力表现出各种生理和遗传反应,使它们能够在非理想条件下生存。微生物滋生的因素包括它们能够产生应激反应并形成难以去除的生物膜。总体而言,保持食品生产场所清洁是确保食品安全和质量的关键方面。这对于遵守监管要求至关重要,并且可能对食品制造商产生重大的财务影响。监测清洁计划的重要性在于检测微生物、有机残留物或两者,这些物质可能存在于受污染的设备和环境表面上。与细菌、酵母和霉菌不同,病毒是专性细胞内寄生虫,只能在活细胞内生长,但可以在宿主外存活数天或数月,形成潜在的感染源。交叉污染是一个重要的风险因素,与高达 38% 的疫情有关,但其实际影响可能被低估。为了防止交叉污染,必须整合食品安全管理实践,包括场所设计、个人卫生和清洁。研究通过对食品处理活动和疫情病例的观察性研究,表明了预防交叉污染的重要性。案例研究 1 来自一家瑞士三明治工厂,在环境拭子和产品中发现了单核细胞增生李斯特菌,这凸显了需要进行环境监测以识别潜在的污染问题。清洁计划的修订解决了这个问题,强调了此类措施的重要性。案例研究 2 来自一家美国乳制品厂,在产品样本和环境拭子中发现了单核细胞增生李斯特菌,表明受污染的设备如何导致交叉污染。交叉污染是导致新兴病原体患病的关键因素,其中许多病原体的感染剂量较低。交叉污染的严重程度因病原体而异,一些病原体如 STEC 和弯曲杆菌的影响为中度至重度。间接交叉污染涉及一系列复杂的步骤,包括手、设备和表面,这说明需要全面的食品安全管理实践。必须认识到,表面采样和交叉污染不仅限于较潮湿的食品加工环境,而是广泛适用于不同的环境。巧克力、花生酱或干面条等低风险食品与食源性疾病爆发有关(Kornacki,2006 年)。在干燥的食品加工环境中,检测环境表面是否存在沙门氏菌或阪崎克罗诺杆菌以及酵母和霉菌等病原体至关重要(Kornacki,2006 年)。在屠宰场,手部接触表面通常受到严重污染,除非将高风险区域和低风险区域分开,否则将存在交叉污染的风险。这可能导致即食食品受到污染。企业被鼓励采用基于风险的方法来评估交叉污染,但这仍然是风险评估中的致命弱点(Griffith 和 Redmond,2005 年)。有效的清洁管理对于减少交叉污染的机会至关重要,但清洁计划中经常忽略手部接触表面(Griffith 和 Redmond,2005 年)。环境病原体污染食物的可能性约为 70%,其中单核细胞增生李斯特菌尤其令人担忧。楼层图/地图可以帮助评估潜在的交叉污染风险,并且是 BRC(2015 年)等标准所要求的。清洁管理的战略方法包括设计、建造和维护设备和场所,以消除难以清洁的区域,最大限度地减少交叉污染的机会,并确保有效的清洁规程。然而,如果没有合规文化和高级管理层的承诺,单靠规程是不会成功的(Griffith,2014 年)。清洁方法的实施是 BRC 等认证标准的一项关键要求,通常基于标准操作程序 (SOP)。清洁文件通常包括政策声明、时间表、程序、详细说明和记录表。越来越多的软件工具被用于支持该过程。审计员经常要求访问清洁计划、结果和从监控中获得的趋势。清洁方案必须是最新的,并且是记录控制系统的一部分,全面涵盖清洁设备和材料。必须认识到,清洁不能消除所有污垢,这对设备、水等材料有影响。未能正确维护清洁设备会导致交叉污染。一项研究发现,附着在清洁工具上的杆状菌和球菌在基因上与从相关食品中分离出来的杆状菌和球菌相同。清洁程序中的典型阶段包括:1. 预清洁 - 去除松散的食物或污垢、刮擦、吸尘等。2. 主清洁 - 去除更牢固地粘附的食物残渣、油脂或污垢3. 冲洗 - 去除清洁剂和乳化/溶解的污垢和油脂其他阶段可能包括消毒选项,以将残留的表面微生物数量降低到较低或可接受的水平。但是,消毒后是否需要冲洗尚有争议,有些指令允许在不存在可能对食品、人员或设备产生不利影响的残留化学物质的情况下将其作为一种选择。杀菌剂的耐药性是一个问题,但必须与可用水的质量、再污染的风险以及保持干燥加工环境的需要相平衡。在美国,消毒剂已为非冲洗应用设定了限制,并在较高水平使用它们,然后冲洗,可以帮助确保表面计数在可接受的范围内。一些处理器还使用额外的“终端消毒”阶段,例如臭氧或过氧化氢蒸汽,这可以在分解前提供额外的杀灭作用。然而,使用这些方法的决定取决于清洁化学品、水质、产品类型和风险水平等因素。全面的清洁实施方法至关重要,包括结合清洁和消毒方案,这些方案通过功效测试或表面采样进行验证和验证。例行审计也可以提供关于清洁效果的宝贵见解。没有单一的“理想”方法来评估清洁和消毒效果,因为所选方法必须考虑潜在表面污染、要控制的危害和所需的清洁度水平等因素。清洁表面的理想方法应该足够灵敏,能够在湿润和干燥的表面上有效工作,具有良好的可重复性和易用性。它还应该快速、便宜、万无一失,以便进行准确的趋势分析。该过程涉及去除有机残留物,例如食物残渣和过敏原,这有助于减少微生物生长并为消毒表面做好准备。低残留微生物数量对于防止食品污染和变质至关重要。清洁表面上是否存在水分会显著影响交叉污染的预防。表面之间的转移率可能有很大差异,并且会因水分而增加,但必须小心干燥以避免再次污染。存在各种方法来评估清洁和消毒的效果,包括目测评估、微生物拭子和快速非微生物化学检测方法,如 ATP 测试。这些较新的测试通过检测污垢而不是微生物来提供更真实的清洁度评估,提供主动的清洁度管理,并及时提供结果以采取纠正措施。在评估表面清洁度方面,微生物和非微生物方法各有优缺点。非微生物方法主要关注残留的有机表面碎片,但也可以通过 ATP 测试检测微生物污染,ATP 测试可以识别低至 104 CFU/mL 的细菌。然而,这些测试不考虑病毒或细菌孢子。微生物学方法仅提供残留表面生物数量的快照,而不表明表面有机污染的程度。食品环境中的表面微生物计数和 ATP 读数之间不太可能存在直接相关性,可能被认为是巧合,因此不可靠。清洁的有效性不能仅由这些方法确定,因为它们没有考虑产品残留物或不同类型的食品污染等各种因素。例如,ATP 含量高的食物可能微生物数量低,而生食可能 ATP 增加相对较低,但微生物数量增加较多。最近,ATP 技术已与评估酸性磷酸酶(一种在生肉和家禽中发现的酶)联系起来。这种方法涉及使表面拭子反应 2 或 5 分钟,光发射越多表示表面越不干净。本章旨在进一步回顾这些方法,以确保通过综合的表面采样计划保持适当且具有成本效益的清洁实践。人们已经探索在清洁前将染料应用于表面作为检测安全或感官问题的一种手段,尽管其在非食品接触区域的有效性尚不确定。一种简单的方法是将透明胶带贴在表面上,然后可以在移除后在光学显微镜下检查。已经开发了更先进的技术,例如荧光和共聚焦扫描激光显微镜,但对于食品企业的日常使用来说并不实用。另一种方法利用 ATP 生物发光测定来评估表面清洁度。酶-底物复合物荧光素-荧光素酶将与 ATP 相关的化学能转化为光,发射的光量与表面上的 ATP 量成正比,因此与表面的清洁度成正比。该方法以相对光单位 (RLU) 测量光,并需要代表可接受清洁值的基线数据。光度计的功能各不相同,有些型号除了标准检测外还提供一系列其他测试。一些光度计使用光电倍增管,而另一些则使用基于光电二极管的系统。每种方法都有其优点和缺点。光电二极管仪器通常更实惠且更坚固,但可能会影响测试灵敏度。为了缓解这种情况,制造商可以调整其试剂、配置或包装中使用的化学成分。选择光度计时,必须同时考虑仪器性能和测试化学成分(线性、灵敏度、重复性和准确性)。有各种报告和建议可帮助您做出明智的决定。许多较新的型号都配备了趋势分析软件,可以帮助跟踪不同地点和工厂随时间变化的数据。一些制造商通过将测试探针和设施集成到光度计中来提供 pH 和温度测量等附加功能。但是,如果设备出现故障,这些增强功能可能会带来复杂性和潜在问题。最终,仪器与其设计的测试相结合的性能对于确定适用性至关重要。大多数制造商提供校准和正/负控制以确保准确性。分析测试的简化使非技术人员能够使用简单的一体化分析进行测试。然而,这些检测中使用的化学配方在不同供应商之间可能存在很大差异,从而影响保质期和储存要求。ATP 水平会因食品类型和加工方式而有很大波动。高度加工的食品通常含有少量 ATP,而西红柿等新鲜食品的 ATP 浓度可能较高。在消毒过程中使用的清洁剂会影响测试结果,因此在测试前冲洗设备至关重要。不同制造商的仪器灵敏度各不相同,有些制造商的灵敏度高于其他制造商。ATP 测试的理想灵敏度水平仍是一个争论话题,讨论的重点是寻找检测低水平和避免过度灵敏度之间的平衡。清洁度标准因企业内的特定表面和区域而异,例如无菌灌装产品与排水管中的表面和区域。制造商提供了清洁度指南,但通常最好由食品企业自己决定,以指导持续改进工作。一种称为 ATP 生物发光的技术已被开发出来用于测量清洁度,一些制造商已采用这种方法来检测低至 0.1-5 ppm 的过敏原残留物。随着 ATP 生物发光的发展,其他针对各种成分(如蛋白质、糖和 NAD)的化学检测方法已被研究作为快速清洁测试。这些测试通常在几分钟内产生单色最终产品,可以用廉价的样品仪器进行目视评估或记录。这些测试的灵敏度各不相同,因此有些测试比其他测试更适合食品企业。使用快速化学测试时要考虑的因素包括测试的普遍性、灵敏度、成本、结果所需时间、简单性和记录能力。每个食品企业必须根据其具体情况和生产的食品类型选择最合适的测试。蛋白质检测方法在检测高蛋白食品(如家禽或乳制品)方面具有潜力,并且在检测过敏原方面也具有特殊用途,因为许多重要的食品过敏原本质上都是蛋白质。给出文章文本这里使用拭子测试检测食品表面的微生物可以提供有关污染程度和病原体存在的宝贵见解。这些测试可以检测蛋白质残留物,这表明有机污染,灵敏度水平从 1 到 10 µg 不等。产生的颜色强度与污染程度直接相关,尽管结果通常以通过/未通过的形式呈现。另一种广泛使用的测试检测 NAD,这是一种化学残留物,可以衡量有机污染。其他基于拭子的测试可以检测低至 2.5 µmol 的葡萄糖或葡萄糖和乳糖。葡萄糖通常存在于食物残渣中,而乳糖测定对乳制品行业特别有用。然而,这些快速化学检测有局限性,包括灵敏度低于同等的 ATP 检测。阴性结果不能用来排除微生物的存在。微生物表面采样的历史悠久,可以追溯到 20 世纪二三十年代。早期的方法基于擦拭,后来开发了直接琼脂接触法。然而,分子方法在未来可能会变得更加普遍。食品工业中使用的主要微生物学方法包括使用拭子、海绵或抹布从表面回收生物,然后在营养培养基上培养。这些测试可用于估计存在的一般或指示生物的残留数量,从而提供清洁效果的证据。指示生物可以反映表面微生物的质量并指示潜在的风险。病原体检测是一种独特的方法,涉及检测可能对公共健康构成风险的特定病原体,例如单核细胞增生李斯特菌。这种类型的测试需要不同的理念方法,并且通常与其他方法结合使用。在检测病原体时,通常需要检查更大的表面面积,而不仅仅是一小部分。所用的介质可以是固体、液体或半固体,通常用拭子接种。要确定病原体是否存在,必须测试足够大的表面面积。如果要寻找清洁度,则应擦拭特定区域,而如果要寻找病原体,则应测试更大的区域。在微生物检测中,回收效率 (RE) 起着至关重要的作用,并且可能因所用方法、微生物类型和测试表面而异。接触板和浸片等接触方法更易于使用,并且可以提供更好的结果,如两次大规模比较所示,尽管差异并不总是很大。然而,所有培养方法都有其挑战,特别是从培养表面去除生物。为了克服这个问题,人们使用了“冲洗”表面,其中冲洗液被用作微生物的来源。最近,人们尝试使用超声波去除表面微生物,尤其是生物膜中的微生物,这引发了人们对回收数量与产品污染的有效性和重要性的质疑。微生物方法的选择取决于所需的具体信息和当前的情况,拭子法被广泛使用,但也有其局限性和缺点。接触板和浸片比拭子法具有更好的可重复性,但也有其自身的挑战和要求。所需的最低限度的培养设施便携式装置可以测试用螺帽密封的冲洗水,保质期长 桨叶带铰链,更易于在平面上使用 只有运动生物才能覆盖琼脂表面 需要培养和灭菌处理设施 表面可能有琼脂残留 无法估计产生可数菌落的表面种群 存在可存活但不可培养 (VBNC) 细菌的风险 擦拭方法仍然是最古老且广泛用于表面监测 擦拭技术的变化会影响结果 回收率低,特别是在低表面种群密度下 缺乏可靠性、可重复性和再现性 有各种标准方法可用,包括 ISO 18593:2004 关于最佳擦拭方案及其对回收率的影响的基本信息仍然缺乏。回收率可看作是从表面去除微生物、在样品采集过程中释放微生物以及随后生长潜力的函数。实际回收率差异很大,从 0.1% 到 25% 不等,具体取决于所采用的技术。拭子类型、表面类型和微生物类型等因素会极大地影响回收率。微生物一旦附着在表面,尤其是生物膜上,就会变得越来越难以去除。此外,由于微生物滞留在芽纤维内,可重复性和灵敏度较差。改进流程一个方面的技术可能会对另一个方面产生负面影响,需要在不同组件之间进行权衡或妥协。缺乏标准化可能使解释单个环境拭子的结果变得困难,可能会导致对清洁效果产生错误的印象。拭子最适合使用多个测试结果来确定随时间推移的性能趋势。了解回收率的问题有助于改进和控制流程。用于保持等渗条件和减少生理压力的采样溶液可用于在运输过程中保持微生物的活力。选择这些溶液时需要小心,通过提供生长培养基来防止人为夸大计数。一些表面可能仍有残留消毒剂,需要中和剂。理想情况下,拭子应及时处理;然而,这通常是不切实际的。与实时分析相比,低温非冷冻运输可以最大限度地减少差异。在解释结果时,可以识别和考虑与常态有显著偏差的结果。需要考虑时间和润湿剂等因素,并针对特定病原体进行优化。应适当选择预富集培养基,但需要考虑非病原体的过度生长。一些制造商在其润湿溶液中添加表面活性剂,以提高从测试表面的“拾取”,这可以人为地增加菌落计数。由于担心拭子芽无法释放回收的微生物,一家制造商开发了一种新型拭子,这种拭子可以释放更多的微生物,从而实现更好的整体回收。另一种方法是使用真空细菌收集系统,这样无需拭子即可进行更大的表面评估。另一种方法是将独立的“一体化培养基和卫生拭子”放入试管中,以更快的速度获得结果。拭子在测试表面后返回到含有琼脂和指示剂系统的培养管中,使微生物生长并通过颜色变化检测其存在。不干净的表面可以在 12 小时内检测出阳性,具体取决于微生物污染水平。使用非特异性培养基可获得一般需氧菌落计数,而选择性或富集培养基则用于特定病原体或指示剂。指示剂系统基于显色、荧光或生物发光检测原理,可在 18 小时内检测出相关微生物。最近,将培养与生物发光测试相结合,可将严重污染表面的检测时间缩短至 1 小时,轻度污染表面的检测时间缩短至 8 小时。生物发光测试可用于大肠菌群、肠杆菌科、大肠杆菌和李斯特菌,从而可以在进一步生产食品之前迅速采取纠正措施。在 ATP 测定中使用光度计将其功能扩展到了传统的估计表面残留物中 ATP 的方法之外。海绵的工作原理与擦拭类似,即从表面去除微生物,释放它们,然后培养它们进行分析。恢复过程包括用压缩的无菌海绵擦拭测试表面,测试表面可能已预先润湿或需要润湿剂。为了避免污染,通常使用无菌手套握住海绵。接种后,将海绵密封在无菌信封中并运送到实验室,在那里搅拌并计数释放的生物。海绵在放回富集培养基中时,对病原体检测具有更高的灵敏度,并且不受附着在其基质上的微生物的影响。一些海绵的表面积比传统拭子大,因此可以测试更大的表面并施加更大的压力。变化包括法国用于擦拭表面的棍棒海绵和纱布。研究还表明,静电擦拭布的性能优于传统拭子(Lutz 等人,2013 年)。其他直接琼脂接触方法,称为“印刷方法”,涉及将无菌琼脂压在要采样的表面上。琼脂吸收微生物,然后繁殖并形成孵育后可见的菌落。这种方法最适合光滑、平坦的表面,并且琼脂的分散方式有所不同。可以使用各种方法计数微生物,包括接触板和浸片。这些工具还可用于计数食物、水或冲洗水中的液体样本中的生物。最近,已经开发出一种混合平板/浸片,用于测试不规则形状的表面。其他变化包括使用 Petrifilm 代替传统的琼脂平板进行培养。Petrifilm 是涂有营养物质和胶凝剂的薄膜,可以用 1 毫升去离子水重新水化以提供表面计数。还发现一种新型滚筒采样器比传统接触平板的产量更高。直接琼脂接触法有几个优点,包括易于使用、成本更低、回收率和可重复性更好。然而,它们更适合平坦表面,在可能出现过度生长的非常污染的表面上可能会出现问题。这会使统计分析变得具有挑战性。尽管如此,这种方法适用于指示清洁充分性,而不是提供精确的计数。与直接琼脂接触法相比,分子方法速度更快、灵敏度更高、特异性更强。这些技术使用基于 DNA 或 RNA 的扩增方法(如 PCR、RT-PCR 和 NASBA)来针对微生物核酸的特定部分。实时 PCR 可以同时进行扩增和检测。虽然分子方法可用于检测微生物,但它们无法区分活体生物和非感染性核酸,仅表明生物在某个阶段存在。分子方法需要技术专长和高成本设备,使其更适合于爆发调查或追踪工厂内的微生物。然而,协议的进步可能会导致它们在未来更多地用于评估消毒效果或估计微生物种群。清洁度风险评估需要了解生物数量和定量实时 PCR (qPCR) 等分子技术。一项研究比较了表面培养和 qPCR,但只测试了一个生物。培养产生的活细胞很少,而 qPCR 显示出更高的结果,包括非活细胞。可能需要对样品进行预处理,这会增加成本和时间。起诉通常依赖于视觉评估,除此之外没有清洁度的法律标准。然而,已经提出了一些指导方针,这些指导方针的推导方式各不相同,并且基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些建议的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或Petrifilm 是涂有营养物质和胶凝剂的薄膜,可用 1 mL 去离子水重新水化以提供表面计数。还发现一种新型滚轮采样器比传统接触板的产量更高。直接琼脂接触法有几个优点,包括易于使用、成本更低、回收率和可重复性更好。然而,它们更适合平坦表面,在可能过度生长的污染严重的表面上可能会出现问题。这会使统计分析变得具有挑战性。尽管如此,这种方法适用于指示清洁充分性,而不是提供精确计数。与直接琼脂接触法相比,分子方法速度更快、灵敏度更高、特异性更强。这些技术使用基于 DNA 或 RNA 的扩增方法(如 PCR、RT-PCR 和 NASBA)来靶向微生物核酸的特定部分。实时 PCR 可以同时进行扩增和检测。虽然分子方法可用于检测微生物,但它们不能区分活体生物和非感染性核酸,只能表明该生物在某个阶段存在。分子方法需要技术专长和高成本设备,因此更适合用于调查疫情或追踪工厂内的微生物。然而,协议的进步可能会导致它们在未来更多地用于评估消毒效果或估计微生物种群。清洁度风险评估需要了解生物数量和定量实时 PCR (qPCR) 等分子技术。一项研究比较了表面培养和 qPCR,但只测试了一种生物。培养产生的活细胞很少,而 qPCR 显示的结果更高,包括非活细胞。可能需要对样品进行预处理,这会增加成本和时间。起诉通常依赖于视觉评估,除此之外没有其他清洁度的法律标准。然而,已经提出了一些指导方针,其推导方式各不相同,基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些推荐的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或Petrifilm 是涂有营养物质和胶凝剂的薄膜,可用 1 mL 去离子水重新水化以提供表面计数。还发现一种新型滚轮采样器比传统接触板的产量更高。直接琼脂接触法有几个优点,包括易于使用、成本更低、回收率和可重复性更好。然而,它们更适合平坦表面,在可能过度生长的污染严重的表面上可能会出现问题。这会使统计分析变得具有挑战性。尽管如此,这种方法适用于指示清洁充分性,而不是提供精确计数。与直接琼脂接触法相比,分子方法速度更快、灵敏度更高、特异性更强。这些技术使用基于 DNA 或 RNA 的扩增方法(如 PCR、RT-PCR 和 NASBA)来靶向微生物核酸的特定部分。实时 PCR 可以同时进行扩增和检测。虽然分子方法可用于检测微生物,但它们不能区分活体生物和非感染性核酸,只能表明该生物在某个阶段存在。分子方法需要技术专长和高成本设备,因此更适合用于调查疫情或追踪工厂内的微生物。然而,协议的进步可能会导致它们在未来更多地用于评估消毒效果或估计微生物种群。清洁度风险评估需要了解生物数量和定量实时 PCR (qPCR) 等分子技术。一项研究比较了表面培养和 qPCR,但只测试了一种生物。培养产生的活细胞很少,而 qPCR 显示的结果更高,包括非活细胞。可能需要对样品进行预处理,这会增加成本和时间。起诉通常依赖于视觉评估,除此之外没有其他清洁度的法律标准。然而,已经提出了一些指导方针,其推导方式各不相同,基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些推荐的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或与直接琼脂接触法相比,分子方法速度更快、灵敏度更高、特异性更强。这些技术使用基于 DNA 或 RNA 的扩增方法(如 PCR、RT-PCR 和 NASBA)来靶向微生物核酸的特定部分。实时 PCR 可同时进行扩增和检测。虽然分子方法可用于检测微生物,但它们无法区分活体生物和非感染性核酸,仅表明生物在某个阶段存在。分子方法需要技术专业知识和高成本设备,因此更适合用于调查疫情或追踪工厂内的微生物。然而,协议的进步可能会导致它们在未来更多地用于评估消毒效果或估计微生物种群。清洁度风险评估需要了解生物数量和定量实时 PCR (qPCR) 等分子技术。一项研究比较了表面培养和 qPCR,但只测试了一种生物。培养产生的活细胞很少,而 qPCR 显示的结果更高,包括非活细胞。可能需要对样品进行预处理,这会增加成本和时间。起诉通常依赖于视觉评估,除此之外没有其他清洁度的法律标准。然而,已经提出了一些指导方针,这些指导方针的推导各不相同,并且基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些建议的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或与直接琼脂接触法相比,分子方法速度更快、灵敏度更高、特异性更强。这些技术使用基于 DNA 或 RNA 的扩增方法(如 PCR、RT-PCR 和 NASBA)来靶向微生物核酸的特定部分。实时 PCR 可同时进行扩增和检测。虽然分子方法可用于检测微生物,但它们无法区分活体生物和非感染性核酸,仅表明生物在某个阶段存在。分子方法需要技术专业知识和高成本设备,因此更适合用于调查疫情或追踪工厂内的微生物。然而,协议的进步可能会导致它们在未来更多地用于评估消毒效果或估计微生物种群。清洁度风险评估需要了解生物数量和定量实时 PCR (qPCR) 等分子技术。一项研究比较了表面培养和 qPCR,但只测试了一种生物。培养产生的活细胞很少,而 qPCR 显示的结果更高,包括非活细胞。可能需要对样品进行预处理,这会增加成本和时间。起诉通常依赖于视觉评估,除此之外没有其他清洁度的法律标准。然而,已经提出了一些指导方针,这些指导方针的推导各不相同,并且基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些建议的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或除了这个标准之外,没有其他清洁度的法律标准。但是,已经提出了一些指导方针,这些指导方针的推导方式各不相同,并且基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些建议的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或除了这个标准之外,没有其他清洁度的法律标准。但是,已经提出了一些指导方针,这些指导方针的推导方式各不相同,并且基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些建议的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或