摘要:随着可再生能源渗透率的提高,混合可再生能源系统与抽水蓄能相结合变得越来越受欢迎。这种配置在通常不与大陆电网相连的偏远地区更为繁荣,这些地区的能源独立挑战加剧。本研究侧重于从建立可再生能源最佳组合的角度设计此类系统,利用可再生能源的互补性和协同作用,结合抽水蓄能的多功能性。然而,这种设计具有相当大的复杂性,一方面是要满足多个目标和约束,另一方面是内在的不确定性,这些不确定性涵盖了所有底层过程,即外部和内部。在这方面,我们利用希腊爱琴海锡夫诺斯岛提出的混合可再生能源系统布局,在确定性和最终随机性设置中开发和评估综合模拟优化方案,揭示不确定性保护下的设计问题。具体来说,我们考虑了三个主要的不确定因素,即风速(自然过程)、能源需求(人为过程)和风能到电能的转换(内部过程,以概率功率曲线表示)。我们还强调了有关系统关键设计参数(水库规模和太阳能发电量)的决策程序,这是通过彻底解释不确定性感知优化结果来实现的。最后,由于拟议的抽水蓄能项目使用海洋作为下水库,因此需要解决额外的技术挑战。
美国是世界上抽水蓄能发电量第二大的国家,共有 43 座电厂,总装机容量为 21.9 吉瓦,估计储能容量为 553 吉瓦时,其中包括世界第二大电厂——位于弗吉尼亚州巴斯县的 3 吉瓦电厂。抽水蓄能发电厂大多建于 20 世纪 70 年代和 80 年代,作为核电的补充,是美国电网的“无声主力”,也是发电系统的支柱,确保了系统的可靠性,但其服务很少得到任何重大认可。但间歇性可再生能源、风能和太阳能的快速扩张,以及天气系统日益变化,极端事件频发,使人们认识到抽水蓄能的价值,并认识到未来需要更多的蓄能。
摘要:美国已开始前所未有的努力,到 2050 年实现所有经济部门的脱碳,这需要迅速部署可变可再生能源技术和电网规模的能源储存。抽水蓄能水电 (PSH) 是一种成熟的技术,能够提供电网规模的能源储存和电网弹性。关于与最先进的 PSH 技术相关的温室气体排放生命周期的信息有限。本研究的目的是对美国新的闭环 PSH 进行完整的生命周期评估,并评估输送到最近的电网变电站连接点的 1 kWh 储存电力所产生的全球变暖潜力 (GWP)。在本研究中,我们使用了处于初步许可阶段的 PSH 设施的公开数据。建模边界是从设施建设到退役。我们的结果估计,美国闭环 PSH 的 GWP 范围为 58 至 530 g CO2e kWh-1,其中储存的电网组合的影响最大,其次是设施建设中使用的混凝土。此外,PSH 场地特征会对 GWP 产生实质性影响,棕地场地的 GWP 比绿地场地低 20%。我们的结果表明,闭环 PSH 比其他储能技术具有气候优势。关键词:抽水蓄能水电、储能、生命周期评估、能源可持续性、水力、水力发电、温室气体排放 ■ 简介
•与对现有和未来的潜在和未来变化条件的所有调查和报告一样,可以实质地影响本报告中考虑的结论和补救选择。所有评估,结论和建议都必须对这些局限性有敏锐的认识。尤其是读者应该了解,要求审查此类设施的工程专业人员对各种关键因素进行判断,这些关键因素无法精确测量。这些因素的不确定性质使得在每种情况下都无法完全准确地评估它们。因此,请注意将读者视为现有条件和情况的任何精确验证形式。
美国能源部(DOE)感谢所有为存储创新(SI)2030行业投入过程做出贡献的利益相关者。附录A中提供了有关参与SI框架和SI飞行路径活动的利益相关者的其他信息。SI活动由Benjamin Shrager(DOE电力办公室)协调,PSH的飞行路径听力是由Vladimir Koritarov(Argonne National Laboratory)促进的,并由Scott Deneale(Oak Ridge National Laboratory)合作。作者还要感谢凯特·法里斯(Kate Faris),惠特尼·贝尔(Whitney Bell)和其他ICF的其他人,因为他们在SI飞行道路上的出色组织聆听课程以及他们为SI活动提供的其他支持。作者Vladimir Koritarov,Argonne National Laboratory
1. 选择方案:蓄水时间、大坝高度范围、技术排除(左) 2. 使用过滤器筛选场地:成本、容量等(右) 3. 通过点击场地或查询自定义区域确定一个或多个水库以进行进一步评估 4. 收集场地特定详细信息 5. 下载数据
该部承认昆士兰州的原住民:原住民和托雷斯海峡岛民人民及其与我们现在所有人共享的土地,风和水的联系。我们尊重过去,现在和出现的长者。我们还承认昆士兰州原住民的持续生活文化 - 他们的各种语言,习俗和传统,知识和系统。我们承认对土地,海洋,天空和国家的深厚关系,联系和责任是原住民身份和文化的组成部分。这个国家是神圣的。土地上的一切都有意义,所有人都是一个。我们承认原住民的神圣联系是文化和存在的核心。我们承认原住民的故事,传统和生活文化,并致力于共同塑造国家的未来。该部承认原住民和社区对昆士兰州的贡献,以及这如何继续更广泛地丰富我们的社会。
本研究由阿贡国家实验室(由芝加哥大学阿贡分校有限责任公司运营,为美国能源部提供合同编号 DE-AC02-06CH11357)和国家可再生能源实验室(由可持续能源联盟有限责任公司运营,为美国能源部提供合同编号 DE-AC36-08GO28308)共同完成,并得到美国能源部水力技术办公室 (WPTO) HydroWIRES 计划的支持。作者感谢 Samuel Bockenhauer、Erfaneh Sharifi 和美国能源部 WPTO 的其他员工赞助本研究并协调项目团队的工作。我们还要感谢美国能源部北极能源办公室的 Givey Kochanowski 和 George Roe、美国能源部印度能源办公室的 Daniel Smith 以及其他人员在研究期间为项目团队提供的支持、见解和指导。最后,作者要感谢项目顾问小组成员的努力和出色的合作,他们为项目团队提供建议、提供相关数据和信息,并审查分析结果。以下专家担任该项目的顾问小组成员:
摘要。本文介绍了 0.1...10 MW 容量水力发电站在能源系统中的重要性及其优势。基于有关此问题的已发表资料,分析了混合可再生模块化闭环可扩展 (h-mcs-PSH) 和壳牌能源北美公司 (SENA) 提出的小型抽水蓄能电站的参数,该电站采用波纹钢上水库和浮动膜下水库,并考虑到乌兹别克斯坦共和国的条件,指出了它们的使用效果。提出了一种基于最大限度利用光电厂功率和最小化消耗能量的标准来确定抽水机组最佳参数和运行模式的图分析方法,以向小容量水电站的抽水机组提供太阳能电池板电力。给出了基于该方法的计算结果。