摘要。本文研究了麦克斯韦混合纳米流体(Cu-Al 2 O 3 /水和CuO-Ag/水)在延伸薄片上的驻点处的情况。该问题的动机在于它在提高现代传热应用中的热效率方面具有潜在重要性,这对于优化制造工艺和节能技术至关重要。因此,本研究研究了非牛顿麦克斯韦纳米液体穿过混合对流边界层(BL)并传播热量通过包含混合纳米颗粒的收缩/拉伸表面。在当前的工作中,涉及两种不同类型的混合纳米流体:Cu-Al 2 O 3 /水和CuO-Ag/水。将铜颗粒(Cu)和氧化铜颗粒(CuO)混合到Al 2 O 3 /水和Ag/水纳米流体中以研究这两种类型。流动受到均匀磁场(MF)和驻点的影响。问题源于它们增强的导热性和传热能力,这对于提高先进冷却系统和涉及驻点流的工程应用中的能源效率至关重要。通过利用适当的变换,偏微分方程 (PDE) 被转换为常微分方程 (ODE)。原型利用四阶龙格-库塔 (RK-4) 方法结合射击技术进行计算分析。当前工作的成果对驻点流具有适用意义,例如核反应堆的冷却、支持者对微电子程序的冷却、拉丝、聚合物挤出和许多工程流体动力学应用。从理论和数值上研究了所选因素对温度、速度、传热速率和表面摩擦系数的影响。发现不同混合纳米粒子的存在以及其他参数的影响对速度和温度分布都起着重要作用。此外,驻点在液体流动中产生了分离极限,从而逆转了这些流动区域之间的磁场影响。 2020 数学科目分类:76A05、76D10、76W05、80A20、65L06 关键词和短语:混合纳米流体、非牛顿麦克斯韦流体、驻点、磁流体动力学、拉伸表面
抑制人尿激酶型纤溶酶原活化剂(HUPA)是一种在细胞细胞蛋白水解中起重要作用的丝氨酸蛋白酶,是降低肿瘤细胞浸润性和转移活性的有前途策略。然而,由于HUPA与其他旁拉丝氨酸蛋白酶的高结构相似性,选择性小分子HUPA抑制剂的产生已被证明是具有挑战性的。产生更具体疗法的努力导致了基于环状肽的抑制剂的发展,对HUPA的选择性更高。虽然需要后一种特性,但在临床前小鼠模型中,直系同源物鼠的保留却带来了抑制剂测试的困难。在这项工作中,我们采用了一种基于达尔文进化的方法来识别HUPA的噬菌体编码的双环肽抑制剂,对Murine UPA(MUPA)具有更好的交叉反应性。最佳选择的双环肽(UK132)分别抑制了HUPA和MUPA,K I值分别为0.33和12.58 µm。抑制作用似乎对UPA是特定的,因为UK132仅弱抑制了一组结构相似的丝氨酸蛋白酶。去除或取代第二个环,一个未在体外进化的循环导致效力低于UK132的单核细胞和双环肽类似物。交换1,3,5- Tris-(溴甲基) - 苯苯,其与噬菌体选择中未使用不同的小分子的苯二苯,导致效力降低了80倍,揭示了分支环化连接器的重要结构作用。UK132中精氨酸的进一步亚属菌对赖氨酸的进一步构成,导致了对HUPA(K I = 0.20 µM)和鼠直系同源物(K I = 2.79 µm)的抑制效力增强的双环肽UK140。通过结合良好的特异性,纳摩尔亲和力和低分子质量,在这项工作中开发的双环肽抑制剂可能会为发展有效和选择性的抗反转移疗法的发展提供新颖的人类和鼠交叉反应性铅。
1。Leanne Airhienbuwa在3D Microtissues顾问中的三重阴性乳腺癌:David Wood赞助计划:BME Pathways Home Institution:Stony Brook University摘要:三层阴性乳腺癌(TNBC)是一种非常积极的乳腺癌形式,与其他类型相比,与其他化学治疗药物相比,乳腺癌的生存率较低。“阿霉素(DXR)是治疗三重阴性乳腺癌的最常用抗癌药物之一”(1)。我们的研究试图了解在3D微动物环境中处理TNBC细胞(HS578T)时DXR的影响。本研究中使用的微作用能够比球形更好地复制肿瘤微环境(2),因为我们可以创建和利用细胞外基质,从而使我们的模型在生理上更相关。通过利用这种3D环境,我们旨在预测药物反应,查看细胞周期调节的变化以及完全提取RNA,以了解发挥作用的遗传因素。为了完成我们的目标,我们制造了微局部,并用阿霉素和DMSO对其进行了处理。2天后,收集培养基样品以在M65 ELISA中进行研究。此外,将组织染色并成像以使细胞活力。在微作用之外,制造了大量凝胶以开始RNA提取的过程。总的来说,这项研究允许生理相关的模型了解阿霉素对三阴性乳腺癌的影响。2。为了更好地理解这种相互作用,我们正在设计一个实验性的宏观缩放模型的鞭毛束模型。3。jonathan auckenthaler在恒定扭矩顾问上对鞭毛旋转动力学的旋转动力学扩展实验模型:穆米塔·达斯古普塔(Moumita dasgupta),Xiang Cheng赞助计划:MRSEC家庭机构:Augsburg University摘要:像大肠杆菌一样的细菌被螺旋旗驱动的螺旋虫驱动的旋转型旋转型旋转状态所驱动的螺旋群驱动着,该旋转型的旋转良好,该旋转型的旋转态度是在旋转的情况下驾驶的旋转良好的态度。尽管已经进行了广泛的研究,但鞭毛的细菌游泳,但在复杂的流体动力学,弹性流体动力学和空间相互作用决定的捆绑中相互作用的集体动力学仍然尚未完全了解。目前,我们正在通过比例综合衍生型控制器(PID)测试拉丝直流电动机,以使用反馈回路实现恒定扭矩。试验,通过将均匀的圆柱连接到电动机上,并将其浸入充满高粘性液体的圆柱缸中,以在不同恒定电压下从不同的恒定电压下测量扭矩。这使我们能够使用COUETTE流的原理来计算电动机的扭矩,并且该数据将用于更好地调整我们的反馈回路。一旦实现,我们将使用粒子图像速度法以彼此不同的距离绘制两个模型鞭毛周围的流场,以在由恒定扭矩驱动的捆绑包中获得重要的见解。我们专注于Genai对写作的影响:跨学科的个人现在正在使用Genai来创造性和非创造性任务,例如撰写文章,求职信和申请表。Maryam Bacchus了解生成AI援助在基于写作的任务顾问中的影响:Harmanpreet Kaur赞助计划:以人为本的计算机家庭机构:Vassar College摘要:在2022年下半年公开发行Chatgpt之后,Generative AI(Genai)工具越来越多地嵌入了各种知识工作任务中(E.G. G.G. Gressing,编码),编码,编码,编码。但是,随着技术进步的快速发展,我们尚未完全意识到将Genai用于这些任务的影响。因此,我们考虑以下研究问题:(1)当人们使用AI辅助工具时,写作的过程和结局如何变化;(2)个性在多大程度上在这种行为中起作用?为了测试这些问题,我们进行了一项受试者内的试点研究,参与者完成了两项写作任务(没有AI辅助),并进行了简短的退出访谈。我们的结果表达了两个条件之间的写作过程的变化,对细节的关注以及个人的尽责性和同意的水平是否与他们的表现有关。