抽象电子组件使用具有不同机械和热性能的各种聚合物材料,以在恶劣的使用环境中提供保护。然而,机械性能的可变性,例如热膨胀系数和弹性模量,通过对长期对电子设备可靠性产生的不确定性引入不确定性来影响材料选择过程。通常,主要的可靠性问题是焊接关节疲劳,其造成了电子组件的大量故障。因此,在预测可靠性时,有必要了解聚合物封装(涂料,盆栽和底部填充物)对焊接接头的影响。已经表明,由于聚合物封装的热膨胀,焊料中存在拉伸应力时,疲劳寿命大大降低。将拉伸应力受试者焊接到环状多轴应力状态中,发现比常规的循环剪切负荷更具破坏性。为了理解其对微电子焊接关节的疲劳寿命的影响,必须隔离拉伸应力成分。因此,为了使无PB的焊接接头构造出独特的标本,以使其符合波动的拉伸应力条件。本文介绍了热机械拉伸疲劳标本的构建和验证。热循环范围与盆栽膨胀特性相匹配,以改变焊接接头施加的拉伸应力的大小。焊接接头几何形状的设计具有比例因子,该比例因子与BGA和QFN焊接接头有关,同时保持简化的应力状态。FEA建模以观察热膨胀期间焊接接头的应力应变行为,以了解各种盆栽材料特性。焊接接头中轴向应力的大小显示出依赖于热膨胀和模量的系数以及热循环的峰值温度。由于样品的热循环辅助,由于盆栽材料的热膨胀而具有各种膨胀性能,焊料接头经历的拉伸应力的大小与焊接的幅度相关联,并为带有封装的电子包装中焊料关节的低周期疲劳寿命提供了新的见解。
© 2023 作者,经 Springer Nature Limited 独家授权。保留所有权利。本文的此版本已在同行评审后被接受发表,并受 Springer Nature 的 AM 使用条款约束,但不是记录版本,不反映接受后的改进或任何更正。记录版本可在线获取:http://dx.doi.org/10.1038/s41586-022-05579-z。
摘要:材料科学领域非常关注二维(2D)材料的研究,尤其着重于石墨烯(GR)及其各种同种异体(例如Graphynes(Gys))。在这项工作中,我们通过有限温度下的分子动力学模拟探索了单轴负载对GY结构的影响,这导致了在特定温度下产生的新阶段。我们在α-和[14、14、18] -Gys中确定了三个新阶段,我们将其命名为C 16 -GY,C 14 -GY和C 12 -GR。这些阶段具有在广泛温度(t≤4和300k≤t≤600K)中保持稳定的显着特性。此外,我们已经对这些新发现的阶段的机械性能进行了广泛的研究。通过有限温度下的分子动力学模拟,使用经验潜力,我们获得了对这些材料在不同温度条件下的行为方式的宝贵见解。我们的结果表明,与α-和[14、14、18] -Gys(46.63和43.98 N/m)相比,在室温(300 K),C 16-,C 16- gys在X-方向(58.85和65.88 n/m)中表现出很高的年轻模量。此外,这些新阶段表现出超过磷,德国烯,硅和Stanene的机械性能。重要的是,它们的机械稳定性和动态稳定性都得到了积极的确认。因此,这些材料是各种机械应用的有希望的候选者。■简介
这项研究旨在开发和制定高度热的石墨烯杂交导电墨水组合石墨烯纳米颗粒(GNP),银片(AG)和乙酸银(SA),作为与化学和有机溶剂混合的导电填充剂。具有改进的性质,它克服了传统材料的局限性,同时保留其有益特征。研究评估了材料对环境因素(例如温度和湿度)的响应的电阻率和特性如何影响其在各种应用中的性能。为了开发高度热的石墨烯杂交导电墨水,使用石墨烯纳米颗粒(GNP),银片(AG)和乙酸银(SA)作为有机溶剂混合的导电填充剂,使用石墨烯纳米颗粒(GNP),银片(AG)和银片制定了新的导电墨水。为了将一批物质变成粉末,它们被超声处理,然后搅拌以形成混合物成粉末。在250oC固化1小时之前,将粉末滴入有机溶剂,1-丁醇和萜醇,然后使用思想搅拌机混合以形成糊状。使用网状模具,将GNP混合糊印在铜基板上。使用刮板,将混合GNP糊剂应用于底物条的三个选定点上的选定网格(3mm x 3mm)。为了评估性能,将混合GNP导电墨水的电阻率设置为基线,并将其与在不同温度 - 湿度水平不同的电阻率读数进行了比较。这意味着混合导电墨水具有良好的热稳定性。GNP混合室温基线和施用不同温度湿度后的GNP混合动力均以电气和机械性能进行比较。随着温度升高,样品的所有点的平均电阻率测量值保持稳定或降低。它表明,随着温度 - 湿度的增加,墨水的电导率显着降解。这表明墨水能够在一定温度范围内维持其结构完整性和特性。未来的工作应调查在机械变形下改善墨水性能的策略,例如使用添加剂或新颖的印刷技术。
本论文中表达的观点为作者的观点,不反映美国空军、国防部或美国政府的官方政策或立场。本材料被宣布为美国政府的作品,不受美国版权保护。
gruppofraattura.it › paper › download PDF 一月 22, 2023 — 一月 22, 2023 主要负载循环,例如飞机发动机的地-空-地循环和备用发电的启动/停止循环,会导致疲劳寿命...
天然/合成混合增强聚合物复合材料具有显著的特性,而且大多数由这些材料制成的部件都会受到循环载荷,因此在结构应用中,其应用的市场份额正在迅速增长。它们的疲劳性能受到了广泛关注,因为由于纤维之间的协同作用,预测它们的行为是一项挑战。这项研究的目的是表征六层凯夫拉纤维与一层编织洋麻增强环氧树脂混合而成的拉伸、压缩和拉伸-压缩疲劳行为,重量分数为 35%。进行了疲劳试验,并以 60%、70%、80% 和 90% 的极限压缩应力进行循环加载。结果完整描述了拉伸和压缩性能,可用于预测疲劳引起的失效机制。
可穿戴电子产品是一种新兴技术,它实现了日常电子设备的灵活性、可穿戴性和舒适性,可广泛应用于电子皮肤[1–4]、自供电传感器[5]和健康监测[6,7]等各种应用。尽管在开发多功能可穿戴设备方面已经取得了长足的进步,但电源仍然是一个难以解决的挑战。电池和超级电容器尽管具有良好的稳定性和效率,但仍然受到寿命、刚性、体积、封装和安全性等问题的限制。[8,9]作为未来自供电技术的潜在候选者,摩擦电和压电纳米发电机(TENG 和 PENG)能够从环境(风、雨和潮汐能)和人体运动(行走、跑步、拍手和弯肘)中获取机械能,并将其转化为电能为可穿戴设备供电。 [10–15] TENG通过摩擦起电和静电感应的耦合效应产生电能,而PENG则利用压电材料变形产生的偶极矩将机械能转化为电能。两者都是很有前途的能源技术,可以满足绿色能源和可持续发展的苛刻要求。然而,这两种技术也各有优缺点。例如,由于压电材料封装方便、结构灵活,PENG通常具有更好的电稳定性和操作灵活性,但其电输出相对较低。相反,TENG通常具有更高的电输出,但是它们的工作机制,例如垂直接触分离和横向滑动模式,需要两种不同材料的相对位移,这限制了设备的配置和应用场景。因此,一种混合型TENG和PENG能量收集器(TPENG)结合它们的优点,以获得更高的功率输出并适应不同的应用,是非常可取的。
许多软机器人组件需要高度可拉伸的导电材料才能正常运行。这些导电材料通常用作传感器或热响应材料的加热器。然而,可拉伸材料很少,它们可以承受软机器人通常经历的高应变,同时保持焦耳加热所需的电气特性(例如,均匀的电导率)。在这项工作中,我们提出了一种含有液体和固体夹杂物的硅树脂复合材料,它可以在经历 200% 的线性应变时保持均匀的电导率。这种复合材料可以铸造成薄片,使其能够包裹在热响应软材料周围,这些软材料在加热时会增加体积或可拉伸性。我们展示了这种材料如何为电控形状变化的软机器人致动器以及仅由电刺激驱动的全硅树脂致动系统开辟可能性。此外,我们还表明这种可拉伸复合材料可用作其他应用中的电极材料,包括线性响应高达 200% 应变且信号噪声接近于零的应变传感器。
聚乳酸 (PLA) 是 3D 打印工艺中常用的材料。在材料挤出 (MEX) 技术中,最终的 3D 打印部件具有较低的机械性能。本研究的目的是研究经过退火的 3D 打印 PLA 样品的拉伸强度。考虑的变量是退火温度和退火时间,有三个温度水平:70 ℃ 、90 ℃ 和 110 ℃ ,以及两个退火时间:60 和 90 分钟。冷却速度设定为每小时 10 C,并在炉中冷却 24 小时。结果表明,退火显著影响拉伸强度,与未退火部件相比,退火部件的拉伸强度显著提高。与未经过退火的部件的拉伸强度值相比,退火部件表现出更高的拉伸强度。弹性模量趋于下降,工件尺寸在各个方向上略有收缩。在对患有足下垂的儿童踝足矫形器(AFO)进行退火实验的结果中发现,经过退火处理的踝足矫形器样品在各个方向上均有收缩,变化相对较小。当使用退火工件时,无需补偿工件尺寸。在 110 C 温度下进行 90 分钟的退火时,可获得最高的拉伸强度。与打印样品相比,退火样品的拉伸强度平均提高了 42%。该玻璃化转变温度越高,热值越高,这将影响塑料链的排列和结晶度,并导致其物理性质发生变化。此外,研究结果表明,通过选择理想的工艺参数和后处理条件,可以大大提高热塑性材料的优化拉伸强度。