图 1 b)、2 b) 和 3 b) 显示了允许的模腔尺寸。模具最好由硬质合金制成,其表面光洁度应允许在正常条件下压缩试件。模具可以包括一个小的出口锥度,以方便顶出并避免试件出现裂纹或微层压,例如每侧 0.01 毫米。对于重复压制,可以使用腔体尺寸扩大 0.5% 的第二个模具。模具应由收缩环良好支撑,以保持内部拉伸应力较低。为了减少样品出现裂纹的发生率,建议在顶出期间使用上冲头压紧装置。
在这项研究中,检查了构建方向对聚乳酸或PLA聚合物拉伸强度的影响。利用直径为1.70mm的PLA丝,根据塑料的ASTM D638规格,使用SolidWorks软件设计拉伸测试样品。然后,样品以45度的方向打印3D,使用FDL 3D打印机直立。最终的样品使用痛风通用测试机进行了应力测试,发现平坦的方向样品由于整个层上更有效的负载分布而导致的紧张应力最大。另一方面,垂直印刷的样品显示出最小的拉伸应力,表明有效的负载传输较低。光学显微镜用于观察材料的打印层方向。
断裂载荷仅供参考,不构成任何保修的一部分。所有载荷均假设使用固定在测试设备上的卸扣进行直线拉动。如果带扣上的载荷不是直线的,强度可能会降低。在使用公式获得部件的断裂载荷等时,假设的极限拉伸应力为:不锈钢为 500 N/mm 2 ,铝为 300 N/mm 2 ,碳钢为 350 N/mm 2 在我们进行的许多测试中,使用织带拉动带扣、D 形环等,织带在产品达到其断裂载荷之前就已失效。我们的测试数据可根据要求提供,并可根据需要对客户的应用进行测试。带扣用于各种用途,安全工作载荷的安全系数可能有所不同。我们建议安全工作载荷为断裂载荷的五分之一。
断裂载荷仅供参考,不构成任何保修的一部分。所有载荷均假设使用卸扣将其固定在测试设备上进行直线拉动。如果带扣上的载荷不是直线的,则强度可能会降低。在使用公式获得部件断裂载荷等时,假设极限拉伸应力为:不锈钢为 500 N/mm 2、铝为 300 N/mm 2、碳钢为 350 N/mm 2 在我们进行的许多测试中,使用织带拉动带扣、D 形环等,织带在产品达到其断裂载荷之前就会失效。我们的测试数据可根据要求提供,如果需要,可以在客户的应用上进行测试。带扣用于各种应用,安全工作载荷的安全系数可能有所不同。我们建议安全工作载荷为断裂载荷的五分之一。
断裂载荷仅供参考,不构成任何保修的一部分。所有载荷均假设使用固定在测试设备上的卸扣进行直线拉动。如果带扣上的载荷不是直线的,强度可能会降低。在使用公式获得部件的断裂载荷等时,假设的极限拉伸应力为:不锈钢为 500 N/mm 2 ,铝为 300 N/mm 2 ,碳钢为 350 N/mm 2 在我们进行的许多测试中,使用织带拉动带扣、D 形环等,织带在产品达到其断裂载荷之前就已失效。我们的测试数据可根据要求提供,并可根据需要对客户的应用进行测试。带扣用于各种用途,安全工作载荷的安全系数可能有所不同。我们建议安全工作载荷为断裂载荷的五分之一。
断裂载荷仅供参考,不构成任何保修的一部分。所有载荷均假设使用固定在测试设备上的卸扣进行直线拉动。如果带扣上的载荷不是直线的,强度可能会降低。在使用公式获得部件的断裂载荷等时,假设的极限拉伸应力为:不锈钢为 500 N/mm 2 ,铝为 300 N/mm 2 ,碳钢为 350 N/mm 2 在我们进行的许多测试中,使用织带拉动带扣、D 形环等,织带在产品达到其断裂载荷之前就已失效。我们的测试数据可根据要求提供,并可根据需要对客户的应用进行测试。带扣用于各种用途,安全工作载荷的安全系数可能有所不同。我们建议安全工作载荷为断裂载荷的五分之一。
断裂载荷仅供参考,不构成任何保修的一部分。所有载荷均假设使用固定在测试设备上的卸扣进行直线拉动。如果带扣上的载荷不是直线的,强度可能会降低。在使用公式获得部件的断裂载荷等时,假设的极限拉伸应力为:不锈钢为 500 N/mm 2 ,铝为 300 N/mm 2 ,碳钢为 350 N/mm 2 在我们进行的许多测试中,使用织带拉动带扣、D 形环等,织带在产品达到其断裂载荷之前就已失效。我们的测试数据可根据要求提供,并可根据需要对客户的应用进行测试。带扣用于各种用途,安全工作载荷的安全系数可能有所不同。我们建议安全工作载荷为断裂载荷的五分之一。
膨胀蛋白是一组古老的细胞壁蛋白,在陆生植物及其藻类祖先中普遍存在。在细胞生长过程中,它们促进细胞壁的纤维素网络被动屈服于膨压产生的拉伸应力,而没有酶活性的证据。膨胀蛋白还与果实软化和其他发育过程以及对环境压力和病原体的适应性反应有关。植物中的主要膨胀蛋白家族包括作用于纤维素-纤维素连接的 α -膨胀蛋白 (EXPA) 和可作用于木聚糖的 β -膨胀蛋白。EXPA 介导酸性生长,这有助于生长素和其他生长剂使细胞壁增大。包括许多植物病原体在内的各种微生物的基因组也编码被称为类膨胀蛋白 X 的膨胀蛋白。膨胀蛋白被认为会破坏横向排列的多糖(尤其是纤维素)之间的非共价键,从而促进细胞壁松弛,发挥各种生物学作用。
摘要:迫切需要找到可持续的方法来生产不含双酚 A 的高性能热固性材料,用于太空或航空航天领域等特定应用。在本研究中,选择了芳香族三环氧物三(4-羟基苯基)甲烷三缩水甘油醚 (THPMTGE),通过与酸酐共聚来生成高交联网络。事实上,制备的热固性材料的凝胶含量 (GC) 约为 99.9%,玻璃化转变值介于 167–196 ◦ C 之间。通过 DMA 分析检查的热机械性能表明材料非常坚硬,E ′ 约为 3–3.5 GPa。热固性材料的刚性由杨氏模量值确认,杨氏模量值介于 1.25–1.31 GPa 之间,断裂伸长率约为 4–5%,拉伸应力约为 35–45 MPa。 TGA 分析强调了非常好的热稳定性,优于 340 ◦ C。还评估了极限氧指数 ( LOI ) 参数,显示了具有良好阻燃性能的新材料的开发。