Murat Tiryakioǧlu 博士,CQE,顾问 Alexandra Schönning 博士,委员会成员 Paul Eason 博士,PE,委员会成员 被工程学院录取:工程学院主任 Murat Tiryakioǧlu 博士,CQE 被计算机、工程和建筑学院录取 Mark A. Tumeo 博士,PE 计算机、工程和建筑学院院长 被大学录取:John Kantner 博士 研究生院院长
本研究调查了制造后热处理对激光粉末定向能量沉积 (LP-DED) 制备的 15-5 PH 不锈钢 (SS) 的微观结构和力学性能的影响。进行了各种热处理程序 (CA-H900 和 CA-H1150) 以评估它们对 LP-DED 15-5 PH SS 拉伸行为的影响。使用扫描电子显微镜来表征微观结构特征和断裂表面。进行拉伸试验以评估低温和室温下的力学性能。CA-H1150 处理试样在拉伸试验后的面积减少率明显高于 CA-H900 试样,而 CA-H900 试样的极限拉伸强度和屈服强度高于 CA-H1150 试样。根据微观结构和断裂表面,讨论了 LP-DED 15-5 PH SS 在不同热处理条件下的力学行为。
由于暴露于高压气态氢,氢环境脆化 (HEE) 所引起的机械性能下降是液氢推进系统中许多材料面临的关键问题。自 20 世纪 80 年代初以来,美国国家航空航天局 (NASA) 一直在马歇尔太空飞行中心 (MSFC) 进行高压氢环境下的拉伸试验,以建立推进应用候选材料数据库。MSFC 过去常常在高压氢环境中以 0.005 in/in/min 的应变速率进行平滑拉伸试验,以评估材料的 HEE 敏感性。1 根据已发布的 NASA TM 的建议,拉伸试验应变速率近年来改为 0.0005 in/in/min。2 有充分的证据表明,平滑拉伸试验应变速率会影响合金 718、4340 钢、316 不锈钢和许多其他合金的 HEE 敏感性。 1,3–7 因此,以 0.005 英寸/英寸/分钟和 0.0005 英寸/英寸/分钟生成的数据显示,许多合金的 HEE 敏感性存在显著差异。
研究了通过激光粉末定向能量沉积 (LP-DED) 制备的 Haynes 230 的微观结构和拉伸力学性能,沉积后在 900°C 至 1177°C 之间进行不同温度的热处理。采用扫描电子显微镜 (SEM) 进行微观结构分析,同时采用拉伸试验评估合金的室温力学性能。在沉积状态下,初始微观结构由细胞状 γ 和 M 6 C/M 23 C 6 碳化物组成。在 1177°C 下固溶 3 小时后,细胞区域似乎完全溶解。在沉积后热处理后,观察到碳化物沿晶粒边界以及晶粒内部沉淀和生长。在应力消除后在 1177°C 下固溶 3 小时可获得更好的延展性,对强度的影响微乎其微。关键词:激光粉末定向能量沉积、Haynes 230、微观结构、拉伸行为。
增材制造金属的机械性能各向异性有几个物理原因。这些原因包括但不限于方向依赖的晶粒和相形态、晶体结构、定向孔隙率/缺陷以及与熔池、分层微观结构相关的异质性。所有这些在大多数增材制造工艺中都很普遍,很难区分它们在机械各向异性中的作用。本综述重点介绍那些试图或合理地隔离其中一个或两个来源的研究,而不是简单地报告机械性能的趋势。这不是一份涵盖所有增材工艺或机械性能的详尽综述;主要评估的是激光粉末床熔合 (LPBF) 金属和拉伸试验结果(模量、屈服强度、极限拉伸强度、伸长率和断裂表面分析)。总之,LPBF 合金的各向异性拉伸性能的主要来源是晶体结构、各向异性微观结构形态、熔合缺陷不足和熔池宏观结构。在各向异性微观结构中,与相和特征(例如晶界 α、沉淀物等)的优先分布相比,拉长的晶粒似乎是次要的。各向异性模量和屈服强度主要由晶体织构引起。晶体塑性模拟支持了这一点。各向异性伸长主要由各向异性微观结构形态、未熔合缺陷和熔池宏观结构引起。支持这一点的证据来自遵循这些特征的断裂表面。熔池宏观结构是最难通过实验从其他各向异性源列表中分离出来的。一组激光工艺参数和合金的发现并不具有指导意义。在将拉伸各向异性的原因与特定来源联系起来之前,必须对上述来源进行表征。需要制定表征和操纵晶体织构、孔隙率、晶粒和相形态以及熔池宏观结构的策略,以更好地理解和控制 AM 金属中的机械各向异性。
摘要 对采用激光粉末定向能量沉积 (LP-DED) 制备的 316L 不锈钢 (SS) 在经过应力消除 (SR)、固溶退火 (SA) 和热等静压 (HIP) 等各种热处理 (HT) 步骤后的微观结构和拉伸性能进行了表征。使用光学和扫描电子显微镜 (SEM) 分析了 HT 之前和之后的微观结构。进行了准静态单轴拉伸和硬度测试以测量机械性能。拉伸结果表明,与其他 HT 条件(即 SR、SA、HIP、SR+SA 和 SR+HIP)相比,非热处理 (NHT) 条件具有更高的强度但更低的延展性。通过采用两步 HT 条件(即 SR+SA 和 SR+HIP),与单个单步 HT 条件(即 SA 或 HIP)相比,拉伸性能没有显著变化。研究结果表明,除非需要进行 HIP 来最大限度地减少体积缺陷含量,否则 LP-DED 316L SS 不需要进行两步 HT。
以改善其在微电子应用中的热性能和拉伸性能。”《材料科学杂志:电子材料》;33,第 4831-4846 页 (2022 年);https://doi.org/10.1007/s10854-021-07672-x 24- Saad M. Fayed、Dongxu Chen a、Shengli Li、MM Sadawy、EA Eid;“微观结构、
AISI 630不锈钢被降水硬化(pH)硬化(pH)越来越多地用作Maraging钢。在这项研究中,在室温下检查了这些钢的微结构和某些拉伸性能。此外,通过对pH钢进行夏比冲击测试来计算材料的冲击吸收能。该值计算为138.9 J,非常接近其他研究人员获得的值。
•制造过程 - 不连续的纤维原料。•高度对齐的不连续的碳纤维预形式,以层次格式进行。•盖章以制作复杂的零件。伸展运动。•拉伸性能等效于连续纤维复合材料。•与几乎所有聚合物(热塑料和热塞器)的任何类型的纤维兼容。