随着高级电子设备和电源系统的快速开发,具有高能量密度和功率密度的能源存储系统变得尤为重要。电源设备的能源存储系统主要包括超级电容器,可充电电池和燃料电池。特别是,新兴的可穿戴电子设备需要灵活且可拉伸的储能设备。聚合物由于其出色的机械强度,柔韧性,耐用性和低成本而广泛用于柔性储能设备中,作为聚合物电极,固态电解质,分离器和导电线。此外,聚合物的机械,电和电化学性能可以通过合适的填充剂在功能上修饰以满足不同的需求。
电子产品已被用于各种应用,如可以监测周围环境的热量、质地、压力和应变的人工智能皮肤[6,7],以及可拉伸的锂离子电池[8],它可用作全柔性电路的电源。在传感领域,人们希望能够随着皮肤和器官等生物表面变形的传感器能够获得更可靠、更准确的信息,而柔性生物传感器是此类应用的有希望的候选者。最近,已经开发出具有各种机制的柔性生物传感器,包括电化学传感器[9,10]、等离子体传感器[11,12]、压电传感器[13,14]等,用于检测小分子[15,16]、蛋白质[17]、核酸[18]以及细菌[19]。
就标题 8524 而言,“平板显示模块”是指至少配备显示屏的用于显示信息的装置或设备,其设计为在使用前并入其他标题的商品中。平板显示模块的显示屏包括但不限于平面、曲面、柔性、可折叠或可拉伸的显示屏。平板显示模块可能包含其他元件,包括接收视频信号和将这些信号分配到显示器上的像素所需的元件。但是,标题 8524 不包括配备用于转换视频信号的组件(例如,缩放器 IC、解码器 IC 或应用处理器)或以其他方式假定其他标题商品特征的显示模块。
可以通过刚性纸来创建可弹性变形的材料,通过对可以局部弯曲和弯曲的适当网格进行图案。我们演示了如何使用三光束干扰光刻在大面积上制造微观模式。我们产生的网格在任何刚性材料膜中都会引起较大且可靠的弹性。微涂层微观会产生可拉伸的导电膜。当样本可逆地拉伸至30%并且没有引入重大缺陷时,电导率变化可以忽略不计,而与迅速撕裂的连续纸相比。缩放分析表明,我们的方法适合于进一步的微型化和大规模制造可拉伸功能膜。因此,它为电子,光子和传感应用中的可拉伸互连以及各种其他可变形结构打开了路线。
本研究文章涉及激活能量和霍尔电流对电动传导的纳米流动的影响,探索了连续拉伸的表面,并探索了扩散热和热扩散的影响。带有小雷诺数假设的横向磁场是垂直实现的。适当的相似性转换被用来将管理部分微分方程转换为非线性的普通微分方程。在射击方法的帮助下计算无量纲速度,温度和纳米颗粒浓度的数值溶液。通过图讨论了每个激活能量,霍尔电流参数,布朗运动参数,嗜热参数和磁参数对速度,浓度和温度的影响。沿X和z指导,局部努塞尔数和舍伍德数的皮肤摩擦系数是数值计算的,以查看新兴参数的内部行为。
共形立方大气模型(CCAM)是用于在CMIP6投影中降低缩放的主要动力学模型。虽然降尺度的焦点放在新西兰,但CCAM是一种基于全球物理的模型,具有拉伸的网格配置。这可以在新西兰和更广泛的南太平洋地区增强水平空间分辨率。在扩展域上的增强和无缝的网格分辨率可以在暴风雨到达新西兰之前有助于代表风暴,并提供对投影变化的更多见解。在历史时期(1960- 2014年)和各种共享的社会经济途径(2015-2099年),使用CCAM使用CMIP6的六种全球气候模型均使用CCAM缩减。最终偏置校正的产品是在新西兰的5公里网格上提供的。
引言软件,包括灵活/可拉伸的传感器,处理器,执行器和显示器,由于它们具有巨大的潜力,其巨大的潜力彻底改变了Precision Healthcare,机器人技术,个人电子,能源,能源和人机相互作用,因此引起了巨大的兴趣。它们符合不规则形状和忍受变形而不遭受损害的能力为新功能和改进的用户体验铺平了道路[1,2]。将发光整合到软设备中为其应用提供了一个额外的维度,有望在伪装,沟通,视觉反馈等领域的令人兴奋的进步,并在诸如体内操纵和治疗等弱光条件下可见度提高[3,4]。然而,当前软设备中的发光主要依赖于触发器,例如电或光,因此,由于需要辅助电气或光学组件和电源供应,它们的应用受到限制,从而为设备制造和系统集成增加了复杂性。
电子设备,无论是传感、驱动还是通信形式,都是未来可穿戴设备的重要方面。需要在多个组件之间建立可靠的电气连接,且不能对可穿戴体验产生不利影响。传统导电材料有两个主要缺点。首先,固体金属材料与人体贴合度不佳,会降低运动自由度。其次,柔软且可拉伸的导电橡胶在受到应力或压缩时,电阻会发生剧烈变化。由于导线的体积在拉伸或压缩过程中保持不变,因此导线的横截面积与长度成反比。因此,电阻随长度变化的平方而变化。对于具有刚性填充颗粒的导电橡胶,由于应变引起的导电填充颗粒分离,电阻变化可能更为极端。这增加了设计柔性电路的复杂性。
约翰·A·罗杰斯 (John A. Rogers) 发明了数量多得令人难以置信电子设备。你想通过测量汗液的化学成分来检查补水情况吗?有这样的设备。用比 M&M 巧克力豆还小的传感器监测太阳紫外线辐射的有害程度?有这样的设备。用超薄、可拉伸的“袜子”作为心脏起搏器来启动心脏?有这样的设备。或者用传感器映射大脑的电信号,传感器可以轻轻地贴在大脑皱巴巴的折叠表面上,然后无害地溶解,这样就不需要再做手术取出传感器了?也有这样的设备。在虚拟现实环境中创造触觉的“人造皮肤”怎么样?或者植入物可以感知用户摄入了致命剂量的阿片类药物,然后提供救命的解毒剂并呼叫急救人员?是的。信不信由你,罗杰斯已经为所有这些应用以及更多应用开发了生物电子学。