1 全球工程与材料公司,2 西北大学工程科学与应用数学 本文表达的观点为作者观点,不应被视为官方观点或反映指挥官或美国海军的观点。 摘要 本文概述了我们最近增强的 Abaqus 3D 扩展有限元工具包 (XFA3D),用于评估块载荷下焊接铝结构的疲劳损伤。 为了减轻在焊接引起的残余应力场下任意裂纹的插入和扩展所带来的计算负担,将节点丰富位移场与水平集描述相结合,与混合隐式和显式裂纹表示方法相结合。 实现了简化的残余应力表征,而无需在裂纹扩展的每个步骤中调用两个单独的分析。 采用应力比相关的疲劳损伤累积模型来计算任意多块载荷谱下的疲劳损伤累积。首先对孔板和多孔梁中曲线疲劳裂纹扩展预测的模拟进行能力验证,然后将其应用于三个具有初始缺陷的焊接部件,包括对接焊缝拉伸试样、具有半椭圆表面缺陷的十字形拉伸试样和具有贯穿厚度裂纹的焊接 T 型接头。
多晶硅拉伸试样在北卡罗来纳州微电子中心 (MCNC) 制造,并在约翰霍普金斯大学应用物理实验室进行测试准备。MCNC 的 DARPA 支持的多用户 MEMS 工艺 (MUMP) 是制造表面微机械设备常用的典型工艺。两层多晶硅用于形成 MEMS 设备的结构元件。多晶硅层由磷硅酸盐玻璃 (PSG) 牺牲层隔开,并通过一层氮化硅与支撑硅基板隔离。最后的金属层定义了设备的电触点。当设备制造完成后,PSG 层会溶解在蚀刻溶液中以释放机械结构。
摘要 - 讨论了简单薄板和板材试样在各种实验研究目的中的实用性。试样应尽可能代表实际疲劳问题的条件,这对于疲劳裂纹萌生阶段比宏观裂纹扩展更难实现。在许多情况下,由于与工程结构条件的相似性不够,因此不建议使用小试样。较大的试样有利于测量裂纹长度和裂纹闭合。Cor.1:lct 拉伸试样和最近提出的派生试样是不对称的试样,而中间裂纹截面、中央缺口试样和双边缘缺口试样是对称的。出于实验原因以及与实际疲劳问题的条件更相似的考虑,应优先使用后者试样。不对称试样的一个显著缺点是应力强度因子 (dKJda) 的高梯度。关键词 - 疲劳试样;对称试样;不对称样本;K 梯度。
声发射,205-223 铝 2014-T651,紧凑拉伸试样,12 2124-T851,试样尺寸对 Ki„ 的影响 123 6061-T651,试样尺寸对 Ki„ 的影响 124 7075-T651, Kt, 为, 107 7079-T6, 紧凑拉伸和 V 形缺口的比较, 25 7475-T7351, 试样尺寸对 /sTfc 的影响, 125, 248, 255-268 铝合金 测试方法比较, 193-204 短棒韧性, 237- 254 氧化铝,断裂韧性, 270-280 ASTM 标准 B 276, 284, 298 ASTM 标准 B 645, 241 ASTM 标准 B 646, 237, 252 ASTM 标准 D 2264, 159 ASTM 标准 D 2936, 159 ASTM 标准 ASTM 标准 E E 112, 272 399, 7, 14, 33, 102, 177, 188, 194, 237-238, 255, 273 铝的比较,12
研究了直接能量沉积制备的 AlSi10Mg 合金的断裂和拉伸行为。在室温下沿不同裂纹平面方向和载荷方向测试了三点弯曲断裂韧性和拉伸试样。在进行机械加工和测试之前,打印样品在 300 ◦ C 下进行 2 小时的热处理以释放残余应力。进行了微观结构和断口图分析,以研究每种裂纹取向的断裂机制和裂纹扩展路径。在裂纹平面方向上观察到断裂韧性的显著差异。裂纹取向在 XY 方向的试样具有最高的断裂韧性值( J Ic = 11.96 kJ / m 2 ),而 ZY 裂纹取向(垂直于打印方向)具有最低的断裂韧性值( J Ic = 8.91 kJ / m 2 )。断裂韧性的各向异性主要与沿熔池边界的优先裂纹扩展路径有关。在熔池边界处,孔隙优先出现,微观结构变粗,且 Si 含量较高,导致该区域的延展性较差,且抵抗裂纹扩展的能力较差。
摘要:钛合金具有重量轻、强度高、耐热腐蚀等优点,但其优异的力学性能与其组织结构密切相关,在焊接、表面强化、修复等加工过程中需要采用创新的加工方式来保证晶体组织的细化,以满足强度提高、力学性能提高和整体强度提高的要求。通过对Ti-6Al-4V合金表面进行激光直接熔化,比较了连续激光与调制激光模式下熔池的差异。在相同功率下,激光熔池热影响区可缩小为连续激光的1/3。连续激光在高能量密度的作用下可以获得深熔池。不同的熔体穿透深度会导致拉伸性能变化很大。在高频(20 kHz)调制激光作用下可以获得高密度、细晶粒的熔池。包含重熔区的不同熔深深度之间的拉伸试样的力学性能与基体接近,研究结论可为激光重熔加工技术的开发提供技术支持。
目录 1.0 简介 1 2.0 背景 12 2.1 识别关键疲劳敏感细节 12 2.2 断裂行为类型 15 2.3 断裂力学分析 16 3.0 断裂试验 35 3.1 试样制作、残余应力和材料特性 35 3.2 带结构细节的工字梁弯曲 41 3.3 带加筋壳的箱梁弯曲 45 3.4 带孔和 CCT 拉伸试样 47 4.0 试验分析 98 4.1 PD6493 计算 100 4.2 扩展裂纹的塑性极限载荷计算 111 4.3 计算施加 J 的有限元分析 112 4.4 J 估算方案 115 4.5 通过 J-R 曲线分析预测裂纹扩展121 4.6 Landes 归一化方法 125 4.7 通过裂纹张开角预测裂纹扩展 129 5.0 延性断裂模型在船舶结构中的应用指南 180 5.1 钢材和填充金属的规格 180 5.2 断裂力学试验方法 183 5.3 推荐的延性断裂模型 185 6.0 结论和进一步研究的建议 191 附录 1:HSLA-80 和 EH-36 材料的选定 J-R 曲线 附录 2:工字梁实验的实验数据 附录 3:箱梁实验的实验数据 附录 4:Cope-Hole 实验的实验数据 附录 5:样品应力强度因子计算 附录 6:工字梁和箱梁试件的极限载荷预测
图 3.6(b):钢 B 的破坏性试验结果与非破坏性 ABI 方法确定的主曲线叠加。仅获得两个不稳定断裂 ......................................................................................................................................42 图 3.7(a):SMA 焊缝的破坏性试验结果与非破坏性 ABI 方法确定的主曲线叠加。在 0 o C 时未获得不稳定断裂 .............................................................................................................................43 图 3.7(b):FCA 焊缝的破坏性试验结果与非破坏性 ABI 方法确定的主曲线叠加....................................................................................44 图 3.8(a):SMA 焊缝的正则化图。破坏性测试结果和非破坏性测试结果的参考温度分别为 -62 o C 和 -48 o C。........45 图 3.8(b):FCA 焊缝的正则化图。破坏性测试结果和非破坏性测试结果的参考温度分别为 -9 o C 和 -49 o C。..........45 图 3.9:钢 A 的标准化图。破坏性试验结果和非破坏性试验结果的参考温度分别为 -77 o C 和 -60 o C.................................46 图 4.1:疲劳试验样品示意图 ......................................................................................50 图 4.2(a):应变应用与时间示意图 .............................................................................51 图 4.2(b):与应变应用相对应的机械磁滞回线(图 4.2(a))。................................................................................................................51 图 4.2(c): 对应于应变循环的 B 场测量(图 4.2a)........................................................52 图 4.3(a): 机械磁滞随循环次数变化的不同阶段.........................................................................................................52 图 4.3(b): 机械磁滞和 B 场的阶段与循环次数的关系.........................................................................53 图 4.4(a): 磁滞损失和 B 场/循环与循环次数的关系(低循环疲劳).........................................................................54 图 4.4(b): 磁滞损失和 B 场/循环与循环次数的关系(高循环疲劳).........................................................................55 图 5.1: 本程序中使用的 MT 样本示意图.............................................................................57 图 5.2: 样本照片,显示一个焊缝上的点焊探针脚趾。另一焊趾经过打磨和锤击处理....................................................................................58 图 5.3:使用 MWM 传感器沿焊缝横向进行的渗透性测量示例.............................................................................58 图 5.4:疲劳试验台上安装有 PD 探头的样本.............................................................................59 图 5.5(a):NPD 读数与循环次数.........................................................................................................60 图 5.5(b):NPD 读数与循环次数(通道 12 和参考探头)....................................................60 图 5.6(a):原始 PD 读数与循环次数(通道 12).........................................................................61 图 5.6(b):原始 PD 读数与循环次数(参考探头).........................................................................61 图 7.1:裂纹扩展仪示意图(CPA 图案).............................................................................67断裂股线与电阻的关系......68 图 7.3(a):在缺口两侧安装两个仪表的中拉伸试样照片.........................................................................................................69 图 7.3(b):疲劳试验装置照片.........................................................................................................69 图 7.4:使用改进和标准安装程序的两个仪表在疲劳试验期间的电压与时间关系图.........................................................................70 图 7.5(a):使用改进安装程序的仪表的电压与时间关系图(图 7.4 的缩放图).........................................................................................71