在生物力学测试之前,通常会冷冻新鲜的人体组织样本,以抑制初始分解过程并实现组织采集与生物力学测试的时间独立性。本研究的目的是比较人类髂胫束 (IT) 的新鲜组织样本与从同一 IT 中采集的新鲜冷冻样本以及在冷冻前用不同浓度的二甲基亚砜 (DMSO) 改性的样本的机械性能。所有样品都经过部分塑化,并使用单轴拉伸试验装置进行破坏性拉伸试验。改进了实验室中已经建立的塑化技术,以改善样品的夹紧行为。材料失效是由承重胶原纤维束的逐渐断裂引起的。与我们的预期相反,新鲜和新鲜冷冻样本的拉伸强度之间没有发现显著差异。与新鲜冷冻样品相比,添加 1 wt% DMSO 不会增加拉伸强度;添加 10 wt% DMSO 甚至导致拉伸强度降低。根据我们的研究结果,使用简单的新鲜冷冻样品来确定拉伸强度是可行的;然而,应使用新鲜样品来生成完整的性能曲线。
本研究探索了用多壁碳纳米管 (MWCNT) 增强的聚乳酸 (PLA) 复合材料的机械性能,重点研究了它们在三角形、倾斜和弯曲支架几何形状中的性能。拉伸试验表明,拉伸应力随 MWCNT 浓度增加而增加,最高可达 3 wt.%,但在 5 wt.% 时降低。较低浓度下机械性能的提高归因于 PLA 基质内 CNT 的均匀分散,从而促进了有效的负载传递。相反,在 5 wt.% 时,MWCNT 团聚会破坏基质的连续性,导致机械性能下降。CNT 与负载方向的对齐会显著影响性能,0° 打印角度由于优化的负载传递而产生更高的拉伸强度。支架的几何结构进一步影响挠度行为;观察到最大挠度随着 MWCNT 含量的增加而降低,特别是在 3 wt.% 时,但在 5 wt.% 时略有增加,表明由于聚集导致刚度降低。这项工作强调了 CNT 浓度和几何设计在优化 PLA/MWCNT 复合材料的机械特性中的重要性;揭示了改变几何形状如何影响应力分布对整体性能的影响。
已经开发出测试方法来比较聚醚醚酮 (PEEK) 热塑性聚合物在准静态、高应变率拉伸试验和疲劳载荷下的机械响应和失效行为。拉伸试验的应变率从 0.0003 s − 1 到 60 s − 1,并在不同的温度下进行,以比较样品在不同测试条件下的流动特性。还进行了不同幅度和频率的疲劳试验,以评估循环载荷期间的温升及其对断裂行为的影响。结果表明,与准静态行为相比,动态拉伸会导致脆性断裂;而在高频率和载荷幅度的疲劳试验下,材料不仅表现出更延展的行为,而且还清楚地表明诱导自热对 PEEK 的模量和机械性能有显著的影响。因此,本文的主要目的是讨论诱导温度及其对断裂表面的影响。热疲劳在提高温度和缩短疲劳寿命方面起着非常重要的作用;因此,有必要了解热疲劳发生的条件以及消耗的能量。从实验结果和计算中获得的方程可以估算疲劳试验中的能量耗散,它是循环和频率的函数。
已经开发出测试方法来比较聚醚醚酮 (PEEK) 热塑性聚合物在准静态、高应变率拉伸试验和疲劳载荷下的机械响应和失效行为。拉伸试验的应变率从 0.0003 s − 1 到 60 s − 1,并在不同的温度下进行,以比较样品在不同测试条件下的流动特性。还进行了不同幅度和频率的疲劳试验,以评估循环载荷期间的温升及其对断裂行为的影响。结果表明,与准静态行为相比,动态拉伸会导致脆性断裂;而在高频率和载荷幅度的疲劳试验下,材料不仅表现出更延展的行为,而且还清楚地表明诱导自热对 PEEK 的模量和机械性能有显著的影响。因此,本文的主要目的是讨论诱导温度及其对断裂表面的影响。热疲劳在提高温度和减少疲劳寿命方面起着非常重要的作用;因此,有必要了解热疲劳发生的条件以及消耗的能量。从实验结果和计算中获得的方程可以估算疲劳试验中的能量耗散,它是循环和频率的函数。
为研究玻璃珠增强热塑性塑料的弹性和粘弹性力学行为,用脉冲激励技术 (IET)、动态力学分析 (DMA) 和拉伸试验 (TT) 测试了两种复合材料。在 20 至 200°C 的温度范围内,以 1、2、5、10 和 20 Hz 的频率对纯聚酰胺 66 和聚对苯二甲酸丁二醇酯及其复合材料 (分别为 30/40 wt-% 和 20/30 wt-%) 进行了 3 点弯曲 DMA 测试。Williams、Landel 和 Ferry (WLF) 理论允许通过确定样品在室温下的特征频率,将频率相关的“破坏性” DMA 测量的弯曲模量与弯曲模式下的非破坏性 IET 测量进行比较。同样,将纵向模式下的 IET 模量与应变率为 1、10 和 100 %/min 的 TT 杨氏模量进行了比较。两种比较都提供了与标准偏差高度一致的模量。此外,还采用了立方体中的立方体模型方法来模拟界面粘附效应,并计算出不同测量技术的合理粘附系数 k adh。
摘要:本研究旨在实现超细晶粒 (UFG) Al 2024 合金在低于传统商用铝合金 (400-500 ◦ C) 温度下的超塑性。室温下通过高压扭转在合金中产生的 UFG 结构平均晶粒尺寸为 100 nm,具有非常高的强度 - 显微硬度 (HV 0.1) 为 286 ± 4,偏移屈服强度 (σ 0.2) 为 828 ± 9 MPa,极限拉伸强度 (σUTS) 为 871 ± 6 MPa,断裂伸长率 (δ) 为 7 ± 0.2%。在温度为 190 至 270 ◦ C、应变速率为 10 − 2 至 5 × 10 − 5 s − 1 的情况下进行了复杂的拉伸试验,并确定了流变应力、总伸长率和应变速率敏感系数的值。结果表明,UFG 合金在 240 和 270 ◦ C 的试验温度下表现出超塑性行为。首次在 270 ◦ C(0.56 T m )的异常低温和 10 − 3 s − 1 的应变速率下实现了 400% 的伸长率。超塑性变形后的 UFG 2024 合金具有比标准强化热处理 T6 后的强度(150–160 HV)更高的强度。
采用溶剂铸造法,以铁屑废料为填料,开发聚苯乙烯复合材料,旨在提高机械、晶体学和微观结构性能,以满足特定用途。根据 ASTM D638-10 标准进行拉伸试验。还进行了 X 射线衍射 (XRD) 分析和微观结构分析。杨氏模量随填料浓度 (0 – 15 wt%) 的增加而增加 (从 335.2 N/mm 2 增加到 1131.3 N/mm 2 ),断裂伸长率则反之亦然 (从 4.9 mm 增加到 1.6 mm)。XRD 显示,铁屑颗粒和聚苯乙烯基树脂 (PBR) 基质之间存在良好的结构相互作用。该复合材料分别结合了聚苯乙烯和铁屑的无定形和晶体性质。也没有观察到化学反应,但聚苯乙烯基体中形成了协同结构增强。微观结构分析表明,铁屑颗粒在聚苯乙烯基体中分散性良好,分布均匀;填料质量分数为15%的复合材料界面黏附性最好,颗粒-基体体系的混合比例适宜。
摘要 由于其坚固性、实现复杂几何形状的能力以及易于使用,3D 打印已成为工程领域值得关注的应用之一。聚碳酸酯由于其优异的机械和光学性能而成为受人关注的热塑性塑料。特别是当注入纳米二氧化硅时,聚碳酸酯成为具有增强性能的 3D 打印的潜在候选材料。注入 AEROSIL(纳米二氧化硅)的聚碳酸酯纳米复合长丝已以 0.5、1 和 3 wt% 的各种填料负载熔融挤出,然后进行 3D 打印。长丝的热分析表明,长丝的热稳定性随着填料负载的增加而增加。拉伸试验表明,添加纳米二氧化硅增强了长丝和 3D 打印薄膜的机械性能。低浓度二氧化硅的添加表现出更高的紫外线透射率,因为二氧化硅限制了聚碳酸酯的流动性。尽管 3D 打印会导致块状材料中出现空隙,但低浓度(0.5 和 1 wt%)的二氧化硅可以改善机械和光学性能。这些改进有望应用于薄膜界面和汽车行业。
摘要:玻璃纤维增强复合材料 (FGRC) 具有优异的机械性能、低成本和耐腐蚀性,可用于替代汽车部件制造中的大部分金属。FGRC 在受到恒幅载荷 (CAL) 时会发生疲劳失效。然而,对 FGRC 行为的研究仍然缺乏预测工程和分析工具,主要是因为对这些材料行为的了解不足,包括它在受到变幅载荷 (VAL) 时的完整性。因此,本研究旨在研究欠载对不同层压板取向的 FGRC 疲劳寿命行为的影响。增强材料使用具有 [0/90]° 和 [±45]° 取向的单向玻璃纤维,并选择短切原丝毡来研究周期性欠载的影响。同时使用聚酯树脂作为基质材料。FGRC 复合材料采用手工铺层技术制造,根据 ASTM D3039 进行拉伸试验,根据 ASTM D3479 进行疲劳试验。结果表明,与 CAL 结果相比,欠载效应使 FGRC 的疲劳寿命行为从实际值下降 1.4% 到 18%。
摘要:温度和湿度耦合对粘合关节的故障特性具有比单个因素更重要的影响,并且对此没有足够的研究。在本文中,选择具有强韧性结构粘合剂的关节以在40℃和60℃的温度下对年龄的关节进行240 h,480 h和720 h的实验分析,湿度为95%和100%。顺序双脚的模型用于适合关节的吸水,并且比较得出粘合剂的吸水符合Fick的定律。准静态拉伸试验表明,关节的机械性能的降低与环境中的水分含量正相关,而后温度固化和氢化塑性的竞争机制则导致较小的失败强度和能量的实验结果一致。宏观故障切片和扫描电子显微镜(SEM)图像的组合得出,关节的故障模式从内聚力的失败转变为随着衰老时间的增加而变化。此外,预计关节疲劳测试的可靠性分析有望为车辆使用温度范围内的粘结技术的生命设计提供指导。