在许多方面,关于圣吉拉纳(Vajrayāna)的一系列会议在世界范围内非常特别,即使不是独一无二的会议,将学者和实践者聚集在一起,分享他们的经验和发现。在会议上的讨论和辩论以及此后的诉讼出版物促成了学术界个人与灵性之间的桥梁的杰出形成。我特别高兴地注意到,受人尊敬的中央修道院和不丹研究中心和GNH的中心在这项努力中非常紧密地合作。他们这次以及上一次会议都一起工作。今年也是如此,在本次会议的组织的各个方面,他们的积极作用充分证明了中央修道院的承诺。因他的圣洁而祝福了不丹的最高住持Je Khenpo,他们的杰出人物中央修道院的大师在指导会议的结构中发挥了至关重要的作用。
2021 年至今 北卡罗来纳大学吉林斯全球公共卫生学院生物统计学系教授兼系主任,北卡罗来纳州教堂山。负责管理全美排名第一的生物统计学系,该系由 40 多名教职员工和 250 多名学生(BSPH、MS 和 PhD)组成;教授统计领导力、监管科学和统计咨询方面的研究生课程。NHLBI 资助的重度和易恶化哮喘网络 (PrecISE) 精准医学干预和 NIAMS 资助的背痛联盟 (BACPAC) 的协调中心 PI(多名),作为 NIH 帮助长期终止成瘾 (HEAL) 计划的一部分。加速 Covid-19 治疗干预和疫苗 (ACTIV) 治疗临床委员会成员。通过 IPA 协议担任 FDA 创新生物统计学方法专家统计顾问,曾担任国际协调理事会 (ICH) 顾问。 2020 年至 2021 年 吉林斯全球公共政策学院生物统计学系教授兼临时联席主席
N.Gopalakrishnan 博士于 1997 年在钦奈安娜大学获得博士学位,研究方向为 III-V 族半导体的成核和生长动力学。获得博士学位后,他前往瑞典皇家理工学院进行博士后研究。后来,他在日本 KIT 和日本 AIST 从事博士后研究 3 年。他曾获得日本政府日本科学技术部颁发的著名 STA(即 JSPS)奖学金,在日本筑波 AIST 工作。他还曾在韩国东义大学担任博士后研究员一年半。自 2018 年 3 月起,他担任国家技术学院蒂鲁吉拉帕利分校 (NIT-T) 物理学教授。此前,他于 2007 年 9 月加入该大学担任助理教授,随后于 2010 年 9 月晋升为副教授。他还曾于 2012 年 10 月至 2015 年 11 月担任 NIT-T 副院长(学术),并于 2015 年 1 月至 2018 年 1 月担任物理系主任。N.Gopalakrishnan 博士在国际期刊上发表了约 87 篇研究论文,在国内和国际会议上发表了约 90 篇研究论文。在他的指导下,5 名学生完成了博士学位,43 名学生完成了硕士学位项目。目前,有 6 名学生在他的指导下攻读博士学位。N.Gopalakrishnan 博士在使用多种技术、VPE、MBE、PLD 和溅射生长 III-V 和 II-VI 薄膜方面拥有丰富的经验。此外,他的团队还致力于氧化物纳米材料的合成、自旋电子学、气体传感和水净化。最近,他的团队成功制造了 ZnO pn 结和基于 CuO 和 ZnO 的 IDE 传感器设备。除了在瑞典、日本和韩国进行博士后研究外,他还访问了美国、德国、香港、澳大利亚、德国和新加坡参加会议、科学讨论、实验室访问和发表受邀演讲。他在印度和国外发表了多次受邀演讲。
1 拉吉夫·甘地石油技术学院计算机科学与工程系地理信息学实验室,印度北方邦阿梅蒂 229304;pgi19002@rgipt.ac.in 2 拉吉夫·甘地石油技术学院石油工程与地球工程系机器学习与自动化实验室,印度北方邦阿梅蒂 229304;ppe15001@rgipt.ac.in 3 印度理工学院土木工程系,印度北方邦坎普尔 208016;blohani@iitk.ac.in 4 拉吉夫·甘地石油技术学院电子工程系,印度北方邦阿梅蒂 229304; udwivedi@rgipt.ac.in 5 印度北方邦 Jais 229304 拉吉夫·甘地石油技术学院化学工程与生物化学工程系;ddwivedi@rgipt.ac.in 6 韩国水原 16499 亚洲大学材料科学与工程系;ashu.materials@gmail.com 7 韩国首尔大学材料科学与工程系,首尔东大门区 Seoulsiripdaero 163 号,邮编 02504 * 通讯地址:susham@rgipt.ac.in(顺便提一句);jpjung@uos.ac.kr(摩根大通);电话:+91-9919556965(顺便提一句);+82-2-6490-2408(摩根大通)† 同等贡献。
我们根据s = 1 /2旋转算子的不同majorana fermion表示形式,使用parton均值结构理论来确定蜂窝晶格上各向异性kitaev-heisenberg模型的相图。首先,我们使用二维Jordan-Wigner Transformation(JWT),涉及半实用的蛇字符串操作员。为了确保典型化的汉密尔顿人仍然是本地的,我们考虑了海森伯格部门的极端交换各向异性的极限。第二,我们使用传统的基塔维尔代表,以四个受局部约束的约束,我们通过拉格朗日乘数执行。对于这两种表示,我们一致地将键和磁化通道中的相互作用项解除,并确定相图作为Kitaev耦合的各向异性的函数,以及Ising交换的相对强度。虽然这两种平均值理论都产生了相同的相位边界,以使无间隙和间隙的Kitaev量子旋转液体之间的拓扑相变,但JWT无法正确描述磁不稳定性和限定性的体温行为。我们的结果表明,在低温下,磁相跃迁是第一阶,但在一定温度的高度上变得连续。在这种能量尺度上,我们还观察到量子旋转液体上的有限温度的交叉,从低温下的分数化paramagnet,在高温下将大量的弹性搅拌冻结到高温下的常规Parmagagnet。
文档编号:IC-0104 上次审核日期:10/03/2024 来源日期:07/20/2010 审核日期:09/2010、12/2012、2/2011、03/2011、06/2011、09/2011、10/2011、12/2011、03/2012、06/2012、09/2012、11/2012、12/2012、03/2013、06/2013、09/2013、12/2013、03/2014、06/2014、09/2014、12/2014、03/2015、 06/2015、09/2015、12/2015、03/2016、06/2016、09/2016、12/2016、03/2017、06/2017、09/2017、12/2017、03/2018、06/2018、10/2018、04/2019、07/2019、07/2020、08/2021、02/2022、10/2022、10/2023、10/2024 本政策中列出的药物的初次和续订请求均须遵守护理管理地点的规定。根据医疗福利收费时,除非会员符合护理场所例外标准,否则药物管理将仅限于非医院设施地点(即家庭输液提供商、提供商办公室、独立门诊输液中心)。要查看例外标准和受护理场所管理的药物列表,请单击此处。
_____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _________________________________________________________________________________ div>
本短期课程 (STC) 旨在让学员掌握增材制造 (AM) 的先进知识,以及它在工业 4.0 和智能制造中的关键作用。随着全球工业向更加自动化和智能化的系统发展,增材制造与物联网、信息物理系统和大数据等数字技术的融合正在改变制造业格局。本课程将探讨增材制造对生产流程、设计方法的影响,以及它在航空航天、汽车和医疗保健等领域的应用。它还将解决采用增材制造技术所带来的挑战和机遇。通过理论知识和实践活动,学员将获得实用见解,了解如何在智能制造环境中利用增材制造和工业 4.0 之间的协同作用来提高生产效率和创新。课程内容
欧洲半导体行业协会 (ESIA) 是欧洲半导体行业的代言人。其使命是代表和促进欧洲半导体行业向欧洲机构和利益相关者的共同利益,以确保可持续的商业环境并提高其全球竞争力。作为关键使能技术的提供商,该行业为工业发展创造了创新解决方案,促进了经济增长并应对了重大社会挑战。欧洲半导体生态系统被欧盟委员会列为研发最密集的行业,它直接支持了约 200,000 个就业岗位,并在欧洲系统、应用和服务领域创造了多达 1,000,000 个就业岗位。总体而言,微电子和纳米电子至少创造了欧洲和世界 GDP 的 10%。