控制分析:控制系统简介、分类、控制系统术语、伺服机构、过程控制和调节器、手动和自动控制系统、物理系统和数学模型、线性控制系统、拉普拉斯变换、传递函数、框图、信号流图。参考书和教科书:1.机械测量和控制 - 作者:D.S.Kumar,Metropolitan 书 2.仪器和机械测量 - 作者:A.K.Tayal,Galgotia Publ.3.测量系统应用与设计-作者 Ernest Doebelin,McGraw-Hill 4.自动控制系统-作者 S. Hasan Saeed 注意:在学期考试中,考官将总共设置 8 个问题,每个单元至少有一个问题,学生只需尝试回答 5 个问题。
方法:在目前的工作中,我们引入了拉普拉斯矩阵,以将功能连接特征(即相位锁定值(PLV),Pearson相关系数(PCC),频谱相干(COH)和共同信息(MI)转换为半阳性运营商,以确保转换为正面的功能。然后,使用SPD网络来提取深空信息,并采用完全连接的层来验证提取特征的效果。,决策层融合策略用于实现更准确和稳定的识别结果,并研究了不同特征组合的分类性能的差异。更重要的是,还研究了应用于功能连接功能的最佳阈值。
EET 3750. 线性系统。(3 小时)涵盖连续和离散系统的基本理论,强调线性时不变系统。考虑信号和系统在时域和频域中的表示。主题包括线性、时不变性、因果关系、稳定性、卷积、系统互连、正弦响应以及用于讨论频域应用的傅里叶和拉普拉斯变换。分析连续波形的采样和量化(A/D 和 D/A 转换),从而讨论离散时间 FIR 和 IIR 系统、递归分析和实现。开发了 Z 变换和离散时间傅里叶变换并将其应用于离散时间信号和系统的分析。
普通微分方程:一阶普通微分方程,初始值问题的存在和唯一性定理,具有恒定系数的高阶的线性普通微分方程;二阶线性差分方程,具有可变系数; Cauchy-euler方程,拉普拉斯的方法转换用于求解普通微分方程,串联解决方案(功率系列,Frobenius方法); Legendre和Bessel功能及其正交特性;线性一阶普通微分方程的系统,Sturm的振荡和分离定理,Sturm-Liouville特征值问题,普通微分方程的平面自主系统:具有恒定系数的线性系统的固定点的稳定性,线性稳定性,线性稳定性,Lyapunov功能。
图 1:激光扫描 ................................................................................................................ 7 图 2:LiDAR 多重回波 .......................................................................................................... 8 图 3:Sobel 边缘检测核 ................................................................................................ 11 图 4:拉普拉斯算子 ............................................................................................................. 11 图 5:高级方法 ............................................................................................................. 21 图 6:植被遮罩过程 ............................................................................................................. 23 图 7:DEM 差异 ............................................................................................................. 25 图 8:旋转最小/最大核 ............................................................................................................. 26 图 9:最小/最大 1 X 3 旋转核结果 ............................................................................. 27 图 10:使用植被遮罩从边缘检测结果中去除植被 ................................................................................................................ 28 图 11:足迹构建过程 ............................................................................................................. 30 图 12:二进制最小/最大栅格...........................................................
摘要。在本文中,为某些图开发了代数和组合特性以及跨越树数的计算。为此,讨论了一种与图形相关的拉普拉斯矩阵光谱的原始方法。它代表了一个替代过程,用于计算任何图的生成树的数量和哪些,并且基本上是在其内部周期之间的共同边数的基础上连接到生成树的数量。显示算法及其源代码,用于确定Jahangir图类别的所有边缘树的收集。给出了涉及此类图的应用程序,以便在传输声明信息中获得令人满意的安全性,并突出显示它们的最终对称属性。
电磁场(3-0-0)先决条件:1。Mathematics-I 2。数学课程结局在课程结束时,学生将展示能力1。了解电磁的基本定律。2。在静态条件下获得简单配置的电场和磁场。3。分析时间变化的电场和磁场。4。以不同形式和不同的媒体了解麦克斯韦方程。5。了解EM波的传播。模块1:(08小时)坐标系统与转换:笛卡尔坐标,圆形圆柱坐标,球形坐标。向量计算:差分长度,面积和体积,线,表面和体积积分,DEL操作员,标量的梯度,矢量和散射定理的差异,矢量和Stoke定理的卷曲,标量的Laplacian。模块2:(10小时)静电场:库仑定律,电场强度,电场,线,线,表面和体积电荷引起电流的边界条件。静电边界值问题:泊松和拉普拉斯方程,独特定理,求解泊松和拉普拉斯方程的一般程序,电容。Maxwell方程,用于静态场,磁标量和向量电势。模块3:(06小时)Magneto静态场:磁场强度,生物 - 萨瓦特定律,Ampere的电路Law-Maxwell方程,Ampere定律的应用,磁通量密度 - 最大的方程。磁边界条件。模块4:(10小时)电磁场和波传播:法拉第定律,变压器和运动电磁力,位移电流,麦克斯韦方程,最终形式,时谐波场。电磁波传播:有损耗的电介质中的波传播,损耗中的平面波较少介电,自由空间,良好的导体功率和poynting矢量。教科书:
41000图理论讲师:Luca Trevisan本课程是关于研究网络的算法和分析技术,尤其是从有趣的生成模型中采样的随机网络。该课程对有向和无向图的基本熟悉,连接性和较强的连接性的概念,以及图形及其属性的BFS和DFS访问。我们将研究线性代数技术在图形上的应用,有关光谱图理论和光谱算法的各种结果,我们将在随机块模型中分析用于社区检测的光谱算法,并在随机图中找到种植的集团。第1周:连通性,剪切和光谱图理论讲座1:拉普拉斯(Laplacian)和连通性讲座的无向图,特征值的拉普拉斯矩阵:图形分配的光谱算法及其分析第3:拉普拉卡(Laplacian eigenvalues and Combinix Properties properix pertrix pertrix pertrix pertrix pertrix pertrix pertrix properrix and pertrix propertrix and pertrix propertrix propertry propertrix propertrix: algorithms for random graphs Lecture 4: spectrum of the adjacency matrix of random graphs, Matrix Chernoff bounds, applications Lecture 5: spectral algorithms for finding planted cliques in random graphs Lecture 6: spectral algorithms for community detection in the stochastic block model Week 3: other matrix norms and semidefinite programming algorithms Lecture 7: semidefinite programming, Grothendieck inequality, and more on community detection Lecture 8: semidefinite programming for community detection in the stochastic block model Lecture 9: semidefinite programming and robustness Week 4: spectra of graphs, random walks, and other random processes Lecture 10: the spectrum of Cayley graphs Lecture 11: expanders, random walks and MCMC algorithms Lecture 12: percolation