1。序言:本课程的主要目的是介绍基因工程或重组DNA技术(RDNA Tech)的概念,发展和应用。本课程提供了对质粒/载体的全面理解,DNA修饰酶,例如限制酶,这些酶切割DNA,连接DNA片段的连接酶以及放大DNA片段的聚合酶。学生将通过探索各种DNA克隆方法来学习RDNA技术的工作方式。在本课程结束时,学生将能够理解重组DNA技术及其相关方法的原理,例如切割,加入和放大DNA片段。他们还将接受有关基因克隆方法的动手培训,并学习使用在线工具分析DNA序列和设计引物。由于本课程的结果,学生将在基因工程方面具有强大的基础和第一手科学理解和动手培训,以及如何用于生成基因改良的生物,以实现商业,农业和医疗目的。2。定量讲座的课程模块:
Vaibhav Kulshrestha 博士,CSIR-中央盐和海洋化学品研究所 (CSMCRI) 膜科学与分离技术部,古吉拉特邦巴夫那加尔
单层石墨烯(SLG)(Novoselov等,2004)可以使用显微镜(如果放置在Si+SiO 2厚度100 nm或300 nm上)(Casiraghi等,2007a)。SIO 2层充当光的腔,并根据其厚度导致建设性或破坏性干扰(Casiraghi等,2007a)。图1显示了计算出的光学对比度作为激光波长和SIO 2厚度的函数,对比度最大值在100和300 nm厚度,对于450至600 nm之间的常用激光波长。虽然通过光学对比进行成像可以使其厚度有一个了解,但它不足以获取更多的定量信息,例如掺杂,混乱,应变等。拉曼光谱镜通常是一种强大的特征技术,通常是碳,范围从富勒烯,纳米管,石墨碳到无定形和类似钻石的碳(Ferrari and Robertson,2000; Tuinsstra and Koenig and Koenig,1970; 1970; Fresselhaus et al。在石墨烯中,拉曼光谱现在可以通常用于提取层n的层数,以估计掺杂和应变的类型和数量,以及检查石墨烯的质量,因为这种光谱技术对缺陷也很敏感(Ferrari和Basko,2013年)。
图1。CH 4 -N 2覆盖物的实验设置可在低压(18 MPa)和低144温度(256 K±4 K)条件下进行合成。杂质在连接到145冷却系统的高压高压灭菌器中合成。由控制气体混合控制台,热质量流量146控制器,手动球阀,螺线管阀和气动压缩机组成的多气体混合系统允许在N 2 -CH 4中制备14777777777均匀的反应气体混合物,范围为4 mol%CH 4至95 mol%CH 4。通过分析可覆盖分离的气相来确定148个组合物,这要归功于Rolsi Micro-Smpampler/Impotor的149个直接气体注射到与热150电导率检测器(GC-TCD)相连的气相色谱仪的直接气体注入。151 152
Antoine Dowek,Marion Berge,Patrice Prognon,François-Xavier Legrand,Eric Larquet,Eric Larquet等。通过表面增强红色纳米粒子悬架的Raman光谱,对去甲肾上腺素和肾上腺素进行了分解和定量分析。分析和生物分析化学,2021,414(2),pp.1163-1176。10.1007/S00216-021-03743-4。hal-04664781
表1。au膜计量学。使用界面分布函数(IDF)方法与金沉积时间计算的金层厚度,平均表面晶粒直径和表面覆盖率的演变。使用IDF方法在模拟表面上估算了粒间距离,该表面由具有受控的表面覆盖范围和直径的纳米虫制成。
目的:RS探索了甲状腺肿瘤临床诊断的可行性。方法:收集来自30名良性患者和30名恶性患者的肿瘤标本。对收集的标本进行了RS和组织病理学分析。计算所有标本的拉曼峰强度,并使用判别分析分析数据。结果:(1)女性恶性肿瘤的患病率高达76.7%。恶性甲状腺肿瘤的中央淋巴结转移占病例的33.3%,颈外侧淋巴结转移仅占6.7%。(2)恶性甲状腺肿瘤的光谱强度明显大于1309 cm -1的良性甲状腺肿瘤,这应该是甲状腺癌的特征峰。RS与恶性甲状腺肿瘤区分良性的RS的准确性,敏感性和特异性为95%,83.3%和89.2%。结论:RS对于诊断甲状腺肿瘤是可行的。本研究为RS在甲状腺组织评估中的更广泛应用提供了实验和临床支持。证据级别:: 4级。
Laura M de Kort,Masoud Lazemi,Alessandro Longo,Valerio Gulino,Henrik P Rodenburg等。使用X-Ray Raman谱学解密了纳米固体电解质中界面诱导的高LI和Na离子电导率的起源。高级能源材料,2024,10.1002/aenm.202303381。hal-04411755