联系方式:〒158-0098 东京都世田谷区上与贺1-20-1 日本陆上自卫队关东补给站与贺支部总务部会计科合同组负责人:近藤电话:03-3429-5241(分机378)传真:03-3429-5245
在对小鼠和大鼠进行的两年恩替卡韦致癌性研究中,发现了阳性致癌结果。在雄性小鼠中,当暴露量≥人类 1 毫克暴露量的 3 倍时,观察到肺腺瘤发生率增加,在雄性和雌性小鼠中,当暴露量约为人类 1 毫克暴露量的 40 倍时,观察到肺癌。肿瘤发展之前,肺中会出现肺细胞增殖,而在服用恩替卡韦的大鼠、狗或猴子中则未观察到这种现象,这表明在小鼠中观察到的肺肿瘤发展的关键事件可能具有物种特异性。在最高剂量的恩替卡韦暴露量下(小鼠剂量约为人类暴露量的 40 倍,大鼠剂量约为人类暴露量的 35 倍(雄性)和 24 倍(雌性),)观察到与药物相关的其他类型肿瘤发生率增加,包括雄性小鼠的肝癌、雌性小鼠的良性血管肿瘤、雄性和雌性大鼠的脑小胶质细胞肿瘤以及雌性大鼠的肝腺瘤和肝癌。在高剂量(0.4 mg/kg/天;相当于人类 1 mg 暴露量的 4 倍)和最高剂量(2.6 mg/kg/天;相当于人类 1 mg 暴露量的 24 倍)下,雌性大鼠均观察到皮肤纤维瘤。(有关详细信息,请参阅毒理学、致癌作用、诱变作用、生育能力受损)。
是睾丸特异性的,免疫组织化学显示蛋白质定位于精子头部的细胞骨架花萼(Hess 等人,1993 年;Hess 等人,1995 年;Rousseaux-Prèvost 等人,2003 年)。为了确定秀丽隐杆线虫 CYLC-1 和 CYLC-2 的定位,我们使用 CRISPR/Cas9 将每个蛋白质内源性地标记为 mNeonGreen (mNG)。我们发现 CYLC-2::mNG 定位于雌雄同体和雄性的精子中(图 1A-F)。检查从雄性解剖的精子细胞显示 CYLC-2::mNG 集中在斑点中(图 1F)。根据它们在精子细胞中的大小和位置,我们预测这些斑点对应于膜状细胞器 (MO)。然而,还需要进一步研究来确认 CYLC-2 是否集中在精子细胞的 MO 中,以及确定精子激活后亚细胞定位是否发生任何变化。
层次结构定理是复杂性理论的基本结果。他们指出,随着计算资源的增加,人们可以严格解决更多问题。bptime的时间层次结构定理仍然是一个臭名昭著的难以捉摸的话题。迄今为止,只有在提供对数或恒定建议位时才知道,bptime的无条件层次结构定理[BAR02,FS04,GST11,FST11,FST11,FST05,PER05,VMP07]。此外,已知层次结构定理对BPP的完全问题[BAR02]持有条件。与确定性[HS65,HS66]或非确定性时间层次结构[COO72,SFM78,ˇ Z´AK83],BPTIME的层次定理保持开放,因为在实用上,似乎有效地确定一个随机的Turning机器是无效的,是否可以有效地确定一个随机的机器被拒绝或不拒绝,或者拒绝了一个有界的错误或不符合界限。因此,标准对角线化在列举所有随机图灵机的步骤上失败,并具有有界的双面误差。实际上,确定每个输入的随机图灵机是否有界限。这种情况在其承诺版本中被认为不同。Pr -bptime的时间层次结构(承诺概率时间课)是一种民间传说的陈述,在谈话,课程和流行的教科书中出现了,例如[AB09]。我们观察到没有来源勾勒出其证明,并且可能假定其有效性是从直接对角线化的,或者遵循存在完全问题的Pr -bptime;参见例如[GAJ22]。在高水平上,对角度化的关键步骤涉及否定枚举的图灵机的输出。但是,我们观察到基于直接对角线的直接对角度或证据(例如,减少到Bptime完全问题[BAR02])并不容易通过PR- BPTIME层次定理携带。通过否定输出,构造的语言
[1] A. Abdollahi,S。Janbaz,M.R。oboudi,具有友谊图或其组成的镜面图形,trans。梳子。2(4)(2013)37-52。 [2] S. Alikhani,N。Ghanbari,randi´c特定图的能量,应用。 数学。 计算。 269(2015)722–730。 [3] S. B. Bozkurt,D。Bozkurt,关于发病率的能量,Match Commun。 数学。 计算。 化学。 72(2014)215–225。 [4] S. B. Bozkurt,D。Bozkurt,尖锐的能量和兰德能量的上限,Match Commun。 数学。 计算。 化学。 70(2013)669–680。 [5] S. B. Bozkurt,I。Gutman,估计发病率的能量,匹配通讯。 数学。 计算。 化学。 70(2013)143–156。 [6] F. Buckley,迭代线图,恭喜。 numer。 33(1981)390–394。 [7] F. Buckley,迭代线图的大小,图理论注意N. Y. 25(1993)33–36。 [8] L. Chen,Y。Shi,三环图的最大匹配能量,匹配通讯。 数学。 计算。 化学。 73(2015)105–119。 [9] D. M. Cvetkovi´c,M。Doob,H。Sachs,图表,理论和应用谱,学术出版社,1980年。 [10] K. C. Das,I。Gutman,A.S。 Cevik,B。Zhou,关于拉普拉斯能源的,比赛社区。 数学。 com-pot。 化学。 70(2013)689–696。 [11] K. C. Das,S。A。Mojallal,I。Gutman,改善了McClelland的能源下限,Match Commun。 数学。 计算。 化学。 数学。2(4)(2013)37-52。[2] S. Alikhani,N。Ghanbari,randi´c特定图的能量,应用。数学。计算。269(2015)722–730。[3] S. B. Bozkurt,D。Bozkurt,关于发病率的能量,Match Commun。 数学。 计算。 化学。 72(2014)215–225。 [4] S. B. Bozkurt,D。Bozkurt,尖锐的能量和兰德能量的上限,Match Commun。 数学。 计算。 化学。 70(2013)669–680。 [5] S. B. Bozkurt,I。Gutman,估计发病率的能量,匹配通讯。 数学。 计算。 化学。 70(2013)143–156。 [6] F. Buckley,迭代线图,恭喜。 numer。 33(1981)390–394。 [7] F. Buckley,迭代线图的大小,图理论注意N. Y. 25(1993)33–36。 [8] L. Chen,Y。Shi,三环图的最大匹配能量,匹配通讯。 数学。 计算。 化学。 73(2015)105–119。 [9] D. M. Cvetkovi´c,M。Doob,H。Sachs,图表,理论和应用谱,学术出版社,1980年。 [10] K. C. Das,I。Gutman,A.S。 Cevik,B。Zhou,关于拉普拉斯能源的,比赛社区。 数学。 com-pot。 化学。 70(2013)689–696。 [11] K. C. Das,S。A。Mojallal,I。Gutman,改善了McClelland的能源下限,Match Commun。 数学。 计算。 化学。 数学。[3] S. B. Bozkurt,D。Bozkurt,关于发病率的能量,Match Commun。数学。计算。化学。72(2014)215–225。[4] S. B. Bozkurt,D。Bozkurt,尖锐的能量和兰德能量的上限,Match Commun。数学。计算。化学。70(2013)669–680。[5] S. B. Bozkurt,I。Gutman,估计发病率的能量,匹配通讯。数学。计算。化学。70(2013)143–156。 [6] F. Buckley,迭代线图,恭喜。 numer。 33(1981)390–394。 [7] F. Buckley,迭代线图的大小,图理论注意N. Y. 25(1993)33–36。 [8] L. Chen,Y。Shi,三环图的最大匹配能量,匹配通讯。 数学。 计算。 化学。 73(2015)105–119。 [9] D. M. Cvetkovi´c,M。Doob,H。Sachs,图表,理论和应用谱,学术出版社,1980年。 [10] K. C. Das,I。Gutman,A.S。 Cevik,B。Zhou,关于拉普拉斯能源的,比赛社区。 数学。 com-pot。 化学。 70(2013)689–696。 [11] K. C. Das,S。A。Mojallal,I。Gutman,改善了McClelland的能源下限,Match Commun。 数学。 计算。 化学。 数学。70(2013)143–156。[6] F. Buckley,迭代线图,恭喜。numer。33(1981)390–394。 [7] F. Buckley,迭代线图的大小,图理论注意N. Y. 25(1993)33–36。 [8] L. Chen,Y。Shi,三环图的最大匹配能量,匹配通讯。 数学。 计算。 化学。 73(2015)105–119。 [9] D. M. Cvetkovi´c,M。Doob,H。Sachs,图表,理论和应用谱,学术出版社,1980年。 [10] K. C. Das,I。Gutman,A.S。 Cevik,B。Zhou,关于拉普拉斯能源的,比赛社区。 数学。 com-pot。 化学。 70(2013)689–696。 [11] K. C. Das,S。A。Mojallal,I。Gutman,改善了McClelland的能源下限,Match Commun。 数学。 计算。 化学。 数学。33(1981)390–394。[7] F. Buckley,迭代线图的大小,图理论注意N. Y.25(1993)33–36。 [8] L. Chen,Y。Shi,三环图的最大匹配能量,匹配通讯。 数学。 计算。 化学。 73(2015)105–119。 [9] D. M. Cvetkovi´c,M。Doob,H。Sachs,图表,理论和应用谱,学术出版社,1980年。 [10] K. C. Das,I。Gutman,A.S。 Cevik,B。Zhou,关于拉普拉斯能源的,比赛社区。 数学。 com-pot。 化学。 70(2013)689–696。 [11] K. C. Das,S。A。Mojallal,I。Gutman,改善了McClelland的能源下限,Match Commun。 数学。 计算。 化学。 数学。25(1993)33–36。[8] L. Chen,Y。Shi,三环图的最大匹配能量,匹配通讯。数学。计算。化学。73(2015)105–119。 [9] D. M. Cvetkovi´c,M。Doob,H。Sachs,图表,理论和应用谱,学术出版社,1980年。 [10] K. C. Das,I。Gutman,A.S。 Cevik,B。Zhou,关于拉普拉斯能源的,比赛社区。 数学。 com-pot。 化学。 70(2013)689–696。 [11] K. C. Das,S。A。Mojallal,I。Gutman,改善了McClelland的能源下限,Match Commun。 数学。 计算。 化学。 数学。73(2015)105–119。[9] D. M. Cvetkovi´c,M。Doob,H。Sachs,图表,理论和应用谱,学术出版社,1980年。[10] K. C. Das,I。Gutman,A.S。 Cevik,B。Zhou,关于拉普拉斯能源的,比赛社区。数学。com-pot。化学。70(2013)689–696。 [11] K. C. Das,S。A。Mojallal,I。Gutman,改善了McClelland的能源下限,Match Commun。 数学。 计算。 化学。 数学。70(2013)689–696。[11] K. C. Das,S。A。Mojallal,I。Gutman,改善了McClelland的能源下限,Match Commun。数学。计算。化学。数学。70(2013)663–668。[12] P.Erdéos,A。R´enyi,V.T。s´os,关于图理论的问题,Studia Sci。亨加。1(1966)215–235。[13] R. Frucht,F。Harary,在两个图的电晕上,Aequations Math。4(1970)322–324。 [14] I. Gutman,M。Robbiano,E。AndradeMartins,D.M。 Cardoso,L。Medina,O。Rojo,线图的能量,Lin。 代数应用。 433(2010)1312–1323。 [15] I. Gutman,图表的能量:旧结果和新结果,在:A。Betten,A.Kohnert,R。Laue,A。Wassermannn(编辑。 ),代数组合和应用,施普林格语,柏林,2001年,196-211。 [16] I. Gutman,共轭烃的拓扑和稳定性。 总π电子能量对分子拓扑的依赖性,J。Serb。 化学。 Soc。 70(2005)441–456。 [17] I. Gutman,X。Li,J。Zhang,Graph Energy,in:M。Dehmer,F。Emmert-Streib(编辑。 ),从生物学到语言学的复杂网络分析,Wiley-VCH,Weinheim,2009年,第145-174页。 [18] F. Harary,图理论,Addison-Wesley,阅读,1969年。 [19] S. Ji,X。Li,Y。Shi,Bicyclic图的极端匹配能量,Match Commun。 数学。 计算。 化学。 70(2013)697–706。 [20] H. H. Li,Y.X。 Zhou,L。Su,具有极端匹配能量和规定参数的图形,匹配通讯。 数学。 计算。 化学。 72(2014)239–248。 [21] H. S. Ramane,H.B。 数学。 Lett。 18(2005)679–682。 数学。4(1970)322–324。[14] I. Gutman,M。Robbiano,E。AndradeMartins,D.M。Cardoso,L。Medina,O。Rojo,线图的能量,Lin。代数应用。433(2010)1312–1323。[15] I. Gutman,图表的能量:旧结果和新结果,在:A。Betten,A.Kohnert,R。Laue,A。Wassermannn(编辑。),代数组合和应用,施普林格语,柏林,2001年,196-211。[16] I. Gutman,共轭烃的拓扑和稳定性。总π电子能量对分子拓扑的依赖性,J。Serb。化学。Soc。70(2005)441–456。[17] I. Gutman,X。Li,J。Zhang,Graph Energy,in:M。Dehmer,F。Emmert-Streib(编辑。),从生物学到语言学的复杂网络分析,Wiley-VCH,Weinheim,2009年,第145-174页。[18] F. Harary,图理论,Addison-Wesley,阅读,1969年。[19] S. Ji,X。Li,Y。Shi,Bicyclic图的极端匹配能量,Match Commun。数学。计算。化学。70(2013)697–706。[20] H. H. Li,Y.X。Zhou,L。Su,具有极端匹配能量和规定参数的图形,匹配通讯。数学。计算。化学。72(2014)239–248。[21] H. S. Ramane,H.B。数学。Lett。 18(2005)679–682。 数学。Lett。18(2005)679–682。数学。Walikar,S。B. Rao,B。D. Acharya,P。R. Hampiholi,S。R. Jog,I。Gutman,Spectra and Spectra and Spectra and Energies of Strumand Graphs的线图,Appl。[22] X. Li,Y。Shi,关于Randi´c索引的调查,Match Commun。计算。化学。59(1)(2008)127–156。[23] H. Liu,M。Lu,F。Tian,图形能量的一些上限,J。数学。化学。41(1)(2007)45–57。 [24] J. Zhu,在具有完美匹配的Unicyclic图的最小能量上。 数学。 计算。 化学。 70(2013)97–118。41(1)(2007)45–57。[24] J. Zhu,在具有完美匹配的Unicyclic图的最小能量上。数学。计算。化学。70(2013)97–118。70(2013)97–118。
药品短缺是制造商行为的结果 药品短缺与 340B 计划之间没有联系 药品短缺的根本原因几乎总是由制造商的行为引起的。虽然 340B 计划只占美国药品支出的一小部分,但 340B 计划的批评者声称 — — 在几乎没有任何支持证据的情况下 — — 340B 计划是造成药品短缺的原因。FDA 发现药品短缺的三个主要原因,其中都与 340B 无关:1) 制造商生产更实惠药品的激励措施不足;2) 市场没有奖励那些实施专注于早期发现供应链问题的系统的制造商;3) 监管和物流挑战阻碍了市场从中断中恢复的能力。3 此外,美国卫生系统药剂师协会 (ASHP) 发现 340B 与药品短缺之间没有联系。 一分钱定价不是药品短缺的原因 340B 法规对那些以超过通货膨胀率的速度提高药品价格的制造商施加了通货膨胀惩罚。药品平均价格超过通货膨胀率的金额将从 340B 上限价格中扣除。有时制造商提价过快,通货膨胀的惩罚会将 340B 价格压低至零或接近零。在这种情况下,制造商被要求对 340B 药品收取不超过一美分的费用。批评者声称,一美分定价会导致药品短缺,因为相关实体会“潜在囤积”,卫生资源与服务管理局 (Health Resources and Services Administration) 已明确驳斥了这一观点。4 如果任何药店订购过多库存,那也是在出现短缺之后,并且是为了确保不间断供应,而不是通过购买价格。更重要的是,制造商只需在提价时更加克制,就可以避免一美分定价。药品短缺威胁 HIV 护理/缩小 340B 资格范围是错误的答案 RWC-340B 正在为即将来临的药品短缺做准备,这种短缺是由制造商最近决定停产某些药物造成的。例如,一家主要的 HIV/AIDS 药物制造商宣布,将在 2023 年底停产几种治疗方案:Epzicom(硫酸阿巴卡韦、拉米夫定)、Lexiva(福沙那韦钙)、Selzentry(马拉维若)、Tivicay(多替拉韦)、Trizivir(硫酸阿巴卡韦、拉米夫定、齐多夫定)和 Ziagen(硫酸阿巴卡韦)。因此,艾滋病毒感染者将被迫更换药物,他们可能无法忍受新的疗法。批评人士提议为供应短缺的药物制定 340B 豁免,以此来解决问题。但此类提案收效甚微,而且会削弱安全网提供商满足患者需求的能力,从而导致更严重的后果。对于瑞安·怀特诊所而言,该提案可能会阻碍诊所对抗艾滋病毒疫情。虽然 RWC-340B 继续倡导国会解决药品短缺问题,但任何此类解决方案都必须针对危机的真正根源——制造商。
BDC Boma Development Committee C-ESMP Construction Environmental and Social Management Plans CAD County Agriculture Development CBCM Community -based complaint mechanism CBO Community-based organization CERC Contingency Emergency Response Component CFIA FAO Investment center Africa Division COC Code of Conduct CSA Climate Smart Agriculture CSC Construction Supervising Consultant CSF FAO Finance division DRC Democratic Republic of the Congo DRM Disaster Risk Management E&S Environmental and Social ECOP环境实践守则ECRP ECRP增强社区的复原力和地方治理项目EHSG环境,健康和安全指南EIA环境影响评估EMG环境管理小组ESC环境和社会承诺计划ESF ESF ESF环境和社会框架环境环境和社会框架环境和社会影响ESMF和社会筛查报告格式道德粮农组织粮农组织食品和农业组织FAOR粮农组织代表粮农组织南苏丹办公室办公室FI金融中介机构FO农民组织FPIC免费事先知情同意GBV性别基于GBV性别基于暴力GHG GHG GHG GREENHOUSE GASSES
实用技术奖每年向开发出色的实用机器人技术的个人和团体颁发,目的是直接利用机器人技术研发的结果,以促进工业领域的自动化并改善社会生活,并进一步促进机器人技术对社会的贡献。今年,有六个申请。根据该协会的选择规则,法官委员会进行了组织和精心审议,作为第一阶段,已确认六项申请符合法规中规定的条件,并且在文件筛选结果后,审理了三起案件。在第二阶段,这三个案件中的每一个都经过严格的技术评估,因此,基于此,整个委员会都仔细审议了他们是否值得该裁决。结果,所有三个都被选为奖项,最终决定是由董事会做出的。颁奖典礼是在大阪理工学院举行的第42个学术演讲上举行的,主席向接受者颁发了奖励证书。最后,我们要向获奖者表示衷心的祝贺,并祝他们将来一切顺利。 Kiguchi Ryoo,第29届实用技术奖选项小组委员会主席