2021 年 3 月 24 日——反恐和国际刑警组织关于化学、生物、杀伤性武器威胁的全球研究。去年 11 月的放射性和核 (CBRN) 恐怖主义: • 2020 年 3 月...
表1。通过Source FY2022表2的运营收入。植入商品代码的运营支出表3。山行线行动支出的经济贡献表4。资本支出的收入来源2022表5。资本支出2018-FY2022表6。植入部门分配资本支出(FY2022)表7。植入部门分配资本支出(FY2021)表8。植入部门分配资本支出(FY2020)表9。植入部门分配资本支出(2019财年)表10。植入部门分配资本支出(2018财年)表11。Mountain Line的资本支出的贡献(FY2018-FY2022)表12。Mountain Line的资本支出的贡献(FY2018-FY2022),简化表表13。山行线的总经济贡献(FY2022)表14。山行线的总经济贡献(20022财年运营贡献 +五年平均资本贡献)表15。在2022财年的产出表16。首15个支持行业 总税收捐款2022表17。 由于避免旅行而节省的钱总税收捐款2022表17。由于避免旅行而节省的钱
Avi 于 1971 年在麻省理工学院获得博士学位,师从 Art Bergles 教授。1972 年,Avi 进入本·古里安大学(以色列贝尔谢巴)开始了他的大学生涯。随后,他进入明尼苏达大学,并于 2001 年至 2010 年期间担任马里兰大学 A. James Clark 工程学院机械工程系主任。自 2010 年以来,他曾休假六年,担任 DARPA 项目经理,然后担任雷神技术公司太空和机载系统首席工程研究员。他的大学生涯中穿插了许多年在业界的工作,他的职业生涯始于雷神公司,也终于雷神公司;20 世纪 80 年代后半期,他在控制数据公司工作了五年。
通过辐射和对流层空气传播的气象数据(TAMDAR)对对流型的测量(TAMDAR),而不是Irport,I Celand,这使得在tamdar数据中实现了Iceland和Iceland of cobsitif的潜在受益者,这是一个潜在的受益者(ICEAN)的潜在收益。尽管数据集的数据集相对较小,并且在数据中考虑了空间可变性,但得出结论是,Tamdar在微不足道的温度下表现良好。辐射和TAMDAR的温度测量通常很好地一致。此外,结果表明Tamdar在评估风向方面做得很好。tamdar检测到相对湿度的变化,并且通常符合相对湿度预测。很难确定TAMDAR风速测量的质量,但是通常可以通过预测或观察到的风变化在一定程度上解释辐射速度和TAMDAR的风速之间的差异。可以得出结论,将TAMDAR数据实施到IMO的观测值和预测系统中,可以很好地补充传统的大气音声,以增加冰岛空域中大气测量的覆盖范围和频率。
摘要背景越来越多的(前)临床证据表明,间歇性暴露于增加剂量的蛋白激酶抑制剂可能会提高其治疗效果。在这项 I 期试验中,研究了高剂量脉冲式索拉非尼的安全性。患者和方法按照 3 + 3 设计,在暴露递增队列中每周给予一次高剂量索拉非尼。在第 1-3 周进行药物监测,并调整剂量以达到预先定义的目标血浆曲线下面积 (AUC)(0-12 小时)。通过摄入酸性饮料可乐来研究低胃部 pH 值对改善索拉非尼暴露的影响。结果纳入 17 名没有标准治疗方案的晚期恶性肿瘤患者。每周一次,高剂量索拉非尼暴露量升级至目标 AUC(0-12 小时) 125-150 mg/L/h,与标准连续给药相比,C max 提高了两倍。在三名患者中观察到剂量限制性毒性:3 级十二指肠穿孔(2800 mg 索拉非尼)、5 级多器官衰竭(2800 mg 索拉非尼)和 5 级胆道穿孔(3600 mg 索拉非尼)。使用固定起始剂量的索拉非尼,第 1 周观察到的 AUC (0-12 h) 和目标 AUC (0-12 h) 之间的平均差异为 45% (SD ± 56%),而药物监测的结果显示第 3 周该值仅为 2% (SD ± 32%) (P = 0.06)。将索拉非尼溶解在可乐中而不是水中并不能改善索拉非尼的暴露量。在两名患者中观察到以病情稳定为最佳反应的临床益处。结论 每周一次大剂量索拉非尼治疗会导致剂量限制性毒性,从而阻止剂量增加超过 125-150 mg/L/h 的暴露量药物监测是追求目标暴露的成功策略。
希瓦吉大学科尔哈普尔分校学术委员会成员 (2023) KBC 北马哈拉施特拉大学贾尔冈分校研究委员会成员 (2023) 麻省理工学院世界和平大学客座教授,浦那 (2021-至今) 马哈拉施特拉邦污染控制委员会 (MPCB) 技术委员会成员 拉吉夫·甘地科学技术委员会 (RGSTC, 希瓦吉大学科尔哈普尔分校) 同行委员会成员 (2015-2017) HEMRL 实验室研究委员会 (LRC) 成员,浦那 (2015-2018) 亚什万特拉奥·恰万马哈拉施特拉邦开放大学参议院成员,纳西克 (2015-2017) 维什瓦卡玛艺术、商业和科学学院管理机构成员,浦那 (2013-2016) 研究咨询委员会成员,Walchand学院,索拉普尔 (2013-2016) 咨询委员会成员,Suyash Gurukul,索拉普尔 咨询委员会成员,地平线探索学院,纳德 知识产权委员会成员,希瓦吉大学,科尔哈普尔 (2014) 咨询委员会成员,聚合物卓越中心,巴罗达 Maharaja Sayajirao 大学,巴罗达 (2013) 参议院成员,索拉普尔大学,索拉普尔 (2010-2014) 担任多所大学的学术委员会成员 咨询委员会成员,地平线探索学院,纳德 同行委员会成员,拉吉夫·甘地科学技术委员会 (RGSTC,希瓦吉大学,科尔哈普尔) (2015-2017) ACRHEM 进度监测委员会成员,高能材料高级研究中心(ACRTTEM),海得拉巴大学 DRDO 卓越中心 印度聚合物科学学会终身会员 SPSI-MACRO-2018(国际聚合物科学与工程会议)联合召集人
对对流层的对流层空气传播的流星数据报告(TAMDAR)在冰岛的Ke-pavík机场上进行了比较,以评估在观测和预测系统中实施TAMDAR数据的潜在利益,并评估Iceland actic of Icelancic ofelodic actee of of Icelanic oferogical oferogical oferolotic o o o o的潜在利益。尽管数据集相对较小,并且数据中的空间可变性很大,但得出的结论是,Tamdar在测量温度方面表现良好。辐射和tamdar的温度测量通常是良好的一致性。此外,结果表明Tamdar在评估风向方面做得很好。tamdar检测到相对湿度的变化,并且通常具有相对湿度预测。很难确定TAMDAR风速测量的质量,但是通常可以通过预测或观察到的空间变化在某种程度上解释由守则和TAMDAR测得的风速之间的差异。可以得出结论,将TAMDAR数据实施到IMO的观测值和预测系统中,将很好地补充传统的大气音声,以增加冰岛空域中大气测量的覆盖范围和频率。
1 艾资哈尔大学理学院物理系,艾斯乌特 71524,埃及;ANkhedr@azhar.edu.eg (ANK);amabdelaty@ub.edu.sa (A.-HA-A.);tammam@azhar.edu.eg (MT) 2 萨坦·本·阿卜杜勒阿齐兹王子大学阿夫拉杰科学与人文学院数学系,沙特阿拉伯阿夫拉杰 11942 3 艾斯乌特大学理学院数学系,艾斯乌特 71515,埃及 4 比沙大学理学院物理系,比沙 61922,沙特阿拉伯 5 索哈杰大学理学院数学系,索哈杰 82524,埃及; mabdelaty@zewailcity.edu.eg 6 沙迦大学应用物理与天文学系,沙迦 27272,阿拉伯联合酋长国;heleuch@sharjah.ac.ae 7 阿布扎比大学艺术与科学学院应用科学与数学系,阿布扎比 59911,阿拉伯联合酋长国 8 德克萨斯 A&M 大学量子科学与工程研究所,德克萨斯州大学城 77843,美国 * 通讯地址:abdelbastm@aun.edu.eg