摘要:透明质酸(HA)是由UDP-葡萄糖酸和UDP-N-乙酰基 - 乙酰葡萄糖氨酸二糖单元形成的生物聚合物,由β-1,4和β-1,1,3糖苷键连接起来。它广泛用于医疗和化妆程序。ha由透明质酸合酶(HAS)合成,该合酶催化了细胞质中的前体连接,拉长聚合物链,并将其导出到细胞外空间。在这里,我们通过插入编码UDP-葡萄糖6-氢化酶的UDP-葡萄糖酸产生的UDP-葡萄糖6-氢化酶的基因来生产HA生产。分别评估了来自动物链球菌(Hasas)链球菌(Hasas)和Multocida(Hasap)的两个微生物。此外,我们评估了使用O. polymorpha中积分酶的遗传开关,以使HA产生与生长无关。在不同启动子的控制下构建了包含两个基因的四个菌株。在含有遗传转换的菌株中,通过在培养的第一个24小时中扫描电子显微镜,通过细胞周围的胶囊样层验证了HA的产生。对于其他菌株,仅在48小时并在优化的培养基中进行量化HA,这表明O.多晶型物中的HA产生受培养条件的限制。尽管如此,这些结果提供了原理证明,即O. polymorpha是适合HA生产的宿主。
自然发生的集体运动是一种引人入胜的现象,其中蜂拥而至的自发和协调其运动。许多蜂群的理论模型都假定理想化,完美的感知能力,而忽略了基本的感知过程,尤其是对于依靠视觉感知的代理商而言。具体而言,许多蝗虫等许多蜂群中的生物视觉利用了单眼非镜像视觉,从而防止了距离和速度的完美获得。此外,蜂群的同伴可以在视觉上相互阻塞,从而进一步引入估计错误。在这项研究中,我们探索了使用非镜镜,单眼视觉在受限条件下出现有序集体运动的必要条件。我们提出了一种基于视觉的聚集运动模型,用于蝗虫样药:拉长形状,平行于水平平面的全向视觉传感器,缺乏立体深度感知。该模型解决了(i)距离和速度的非镜镜估计,(ii)视野中存在闭塞。我们考虑并比较代理商可能用来以视觉感知过程所需的计算复杂性为代价来解释部分视觉信息的三种策略。在各种几何环境(环形,走廊和环形领域)进行的计算机模拟实验表明,这些模型可以导致有序的或近地有序状态。同时,它们在达到顺序的速度上有所不同。此外,结果对代理的伸长敏感。在几何受限的环境中进行的实验揭示了模型之间的差异,并阐明了使用它们来控制蜂群剂时可能的权衡。这些建议用于进一步研究生物学和机器人技术的途径。
高温超导体由于其独特的电子特性和非常规的超导行为而引起了极大的关注。尤其是,由高能离子植入,压力和电磁场等外部场引起的高体性超导材料的相变已成为研究热点。但是,潜在的机械主义尚未完全理解。第一原理计算被广泛认为是深入探索这些内在机制的有效方法。在这项研究中,使用第一原理计算来研究氧空位现象对不同功能下YBA 2 Cu 3 O 7(YBCO 7)的电子传递性能和超导性能的影响(PBE,PBE + U,HSE06)。结果表明,氧空位显着改变了带的结构,并且在不同功能的预测中观察到了考虑的差异。YBA 2 Cu 3 O 6(YBCO 6)的计算带隙范围为0至1.69 eV。较大的带隙表明是绝缘状态,而没有带隙的缺乏表明材料保持金属。通过将结果与实验结果进行比较,我们发现HSE06功能提供了最合理的预测。带隙的存在或不存在主要受铜轨道的影响。氧气空位会导致材料的C轴拉长,这与实验中He-ion辐照后X射线差异(XRD)分析中观察到的趋势是一致的。我们的发现有助于解释在外部田地下,尤其是He-Ion Irra-priation的金属 - 绝缘体相变,并为开发高温超导材料及其设备应用提供了理论基础和新见解。
微生物电气合成(MES)是一种有前途的碳利用技术,但是低价值的产品(即乙酸或甲烷)和高电力需求需求阻碍其工业采用。在这项研究中,低欧姆耐药性为15.7 m u m 2的电气有效的MES细胞在喂养批处理模式下以固定态进行了galva,这是高CO 2和H 2可用性的交替时期。这促进了乙酸和乙醇的产生,最终触发了选择性(碳为基础的78%)丁酸通过链伸长产生。以1.0或1.5 mA CM 2的施加电流为14.5 g m 2 d 1,为megasphaera sp。钥匙链拉长播放器。与含有富集群落的天主解的第二个细胞接种,导致丁酸产生的速率与以前的细胞相同,但滞后相降低了82%。此外,在阴极室中打断CO 2喂食并设置一个1.7 E 1.8 ATM的常数pH 2,触发了pH低于4.8的pH,触发了溶解剂丁醇的产生。有效的细胞设计导致平均细胞电压为2.6 e 2.8 V,尽管库仑(Coulombic efiencies)限于O 2和H 2的交叉,但产生了34.6 kWh el Kg 1的电能需求,即34.6 kWh el kg 1的丁酸1。总而言之,这项研究揭示了从CO 2获得能量良好的丁酸产生的最佳工作条件,并提出了一种将其进一步升级为有价值的丁醇的策略。©2023作者。由Elsevier B.V.代表中国环境科学研究所,中国环境科学学院出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
金属零件的定向能量沉积(DED)添加剂制造过程越来越流行,并且由于它们制造大尺寸的一部分的潜力而被广泛接受。由于过程物理学而获得的复杂热循环导致残留应力和失真的积累。但是,为了准确地对大零件的金属沉积传热进行建模,数值模型会导致不切实际的计算时间。在这项工作中,开发了具有安静/主动元件激活的3D瞬时元素模型,用于建模金属沉积传热过程。为了准确地模拟移动热源,戈德克的双椭圆形模型的实现是用足够小的模拟时间增量来实现的,从而使激光在每个增量过程中移动其半径的距离。考虑使用不同工艺参数制造的不锈钢316L的薄壁壁,用COMSOL 5.6多物理软件获得的数值结果通过在制造20层的底物上记录的实验温度数据成功验证。为了减少计算时间,实现了整个路径上的热源的拉长椭圆形热输入模型。已经发现,通过采取如此大的时间增量,数值模型会产生不准确的结果。因此,该轨道分为几个子轨道,每个子轨道都以一个模拟增量应用。另外,引入了校正因子,该校正因子进一步减少了伸长热源的计算误差。在这项工作中,进行了调查,以发现正确的模拟时间增量或子轨道大小,从而导致计算时间减少(5 - 10次),但仍会产生非常准确的结果(低于温度相对误差的10%)。最后,在发现正确的时间增量大小和校正因子值以减少计算时间产生准确结果的情况下,还建立了新的相关性。
染色体隔离需要在动型蛋白复合物和有丝分裂纺锤体之间进行协调,这对于两个子细胞之间的遗传分裂至关重要。动力学是一种蛋白质复合物,位于姐妹染色单体的丝粒上。在有丝分裂过程中,观察到的动物学实际上将姐妹染色质朝着用有丝分裂纺锤体的指南伸向细胞的相反两极。有人提出,stu1是一种小动物络合物中的小蛋白,有助于延迟酿酒酵母的萌芽酵母中的后期,直到每个染色体都附着在有丝分裂的纺锤体上。也有人建议Stu1与纺锤体相互作用,并在拉长时同步移动。已经提出,磷酸化可以调节Stu1的功能,并且熔体是其他动力学蛋白中已知的磷酸化位点,因此,在称为sTu1上的称为熔融基序的磷酸化位点上除去苏氨酸氨基酸在Stu1上的磷酸化位点可能会影响姐妹染色体的能力,这可能会导致姐姐的正确性,这可能会使YEAST YEAST降低。熔体是真菌中保存良好的序列,是其他动力学蛋白中的已知磷酸化位点,是STU1的同源物。利用CRISPR-CAS9酶,我们将在发芽的酵母菌Stu1基因中引入磷酸无效突变,以用熔体序列替代苏氨酸719密码子。到目前为止,我们已经成功克隆了含有引导RNA和Cas9酶基因的质粒。我们假设该突变将在Stu1中产生故障,这可能会阻碍其协调纺锤体和动孔附着的能力,并在有丝分裂过程中完全防止染色体分离。下一步将是用质粒和我们的模板DNA转化酵母,该模板DNA代码在Stu1中的719密码子上编码Valine,这种组合将完全激活酵母中的CRISPR CAS CAS 9基因组编辑系统。
寡糖(来自希腊语ὀλίγοςOlígos,“少数”和σάκχαρSácchar,“糖”)是糖(糖)聚合物,其中包含少量数量(通常为3-10个或更多)单糖(简单糖)。与大多数其他哺乳动物的牛奶不同,人乳是独特的,因为它含有高浓度的150多种不同且结构上不同的寡糖。实际上,对于5-15 g/L,成熟牛奶中的人牛奶寡糖(HMO)的总浓度通常超过人奶蛋白的总浓度,使HMOS成为仅次于简单的牛奶糖乳糖和脂质的第三大分子,而不是计算水[1]。HMO包含多达5个不同的构建块(单糖):葡萄糖(GLC),半乳糖(GAL),N-乙酰基葡萄糖胺(GLCNAC),Fucose(FUC)和唾液酸(SIA)。根据使用了哪些构建块以及如何将它们链接在一起[1],从而生成不同的HMO。图1a显示了HMO结构组件的蓝图。所有HMO在还原端携带乳糖(GALβ1-4GLC)。乳糖可以通过二糖乳糖-N-生物(GALβ1–3GLCNAC)或n-乙酰氨基胺(GALβ1-4GLCNAC)的添加来拉长。乳糖或细长链可以用唾液酸在α2-3-或α2-6-链接中修饰,在α1-2-,α1-3-或α1-3-或α1-4链接中进行葡萄糖基化,从而大大扩展了HMO结构组合的多样性。对于外部,每种唾液酸单糖都包含一个羧基,并引起对HMO分子的负电荷,从而改变了其结构特性。HMO结构通常决定其功能[2]。尽管HMO组成遵循基本的蓝图和150多个不同的HMO,但迄今已确定了150多个不同的HMO,但重要的是要注意,每个女性都合成并分泌出不同的HMO组成曲线,在不同女性之间有很大的不同(图1b),但在同一妇女的哺乳过程中保持相当恒定[3]。到目前为止,我们的实验室已经分析了从世界各地女性收集的10,000多个牛奶样本中的HMO组成,作为各种协作项目的一部分。图1C列出了主成分(PC)图中的某些数据,再次强调了女性之间的HMO组成图谱有所不同,但也存在明显的HMO剖面簇或HMO lactotypes。
1.当前的军队模式受到法国国防力量近几十年来持续大幅下滑的影响,导致能力差距的出现,削弱了其应对多元化威胁的能力。装备现代化日积月累、兵力下降、保障削弱,军队作战能力下降。同时,最近交战的持续时间、战区内和战区间的拉长、战斗的严酷性以及由此产生的消耗已经超出了预期地消耗了装备的潜力。2.该法案是战略审查的延续,共和国总统于 2017 年 10 月批准了战略审查的结论,并回顾了法国和欧洲正面临着多样化和可持续的严重威胁。恐怖主义风险持续存在、强权政治卷土重来、国际秩序弱化,战略环境不稳定不确定。我们的军队将不得不面对更严峻的冲突和装备更精良的对手。面对这些威胁,必须保持我们的战略自主权,同时通过更强大的欧洲防御来建设欧盟的战略自主权。在此背景下,2019-2025年军事规划法有双重目标:一方面立即为军队提供持续履行使命的手段,另一方面为法国明天的防御做好准备手,“别处”。它源自 2013 年 12 月 18 日第 2013-1168 号法律,涉及 2014 年至 2019 年军事规划,包含有关国防和国家安全的各种规定,并于 2015 年更新并继续其承诺。虽然上述 2013 年 12 月 18 日法律的可持续性取决于投票时是否符合结构性财务假设,包括实现特殊资源,但 2019 年 -2025 年的军事规划法案减少了其军事资源完全根据预算拨款来规划,从而消除了这些不确定性。它还在接近最近期间记录的承诺数额的基础上增加了外部业务和内部任务的经费。如果与特殊资源(在2015年7月更新军事规划法期间大部分被预算资源取代)、工业重新谈判和“阵风”出口相关的假设得到验证,则对外行动的强化以及自 2015 年以来在国家领土上发生的恐怖袭击导致 2016 年 4 月做出了结构性决定防御工具:缓解人员减少的影响,增加用于维持作战状态的资源以及
感觉方法感官评估感觉评估被定义为用于唤起,测量,分析和解释对食物特征的反应的科学学科,这些反应是通过视觉,气味,口味,触摸和听觉感知的。在感觉分析,外观,气味,风味和质地中使用人类感官评估。在相同水平的刺激反应中的个体之间的变化可能会有所不同,并可能有助于测试的非确定答案。因此,在选择和培训评审时,重要的是要意识到这些差异进行感觉分析。选定的受访者通常经过训练以解释刺激和响应,以便获得描述评估鱼类特征的客观反应。也很容易对问题进行客观答案e。 g。鱼是否严格(完全僵硬)?但是,如果评估者必须决定鱼是柱还是前柱,则需要进行更多的培训。主观评估是基于评估者对产品偏爱的响应,可以应用于需要消费者反应的市场研究和产品开发等领域。质量控制中的评估必须是客观的。鱼保护鱼保护专门指的是用于防止鱼变质和拉长其架子的技术。保存被视为一种在一年中某些时间大量可用的多余鱼类的方式,因此可以在鱼类稀缺的时候被食用。尽管消费者更喜欢新鲜的鱼,但鲜鱼仅在沿海地区可用。鱼类保存传统上有三个目标:保存营养特征,外观保存以及可以储存鱼的时间的延长。传统的保存方法通常旨在排除空气,水分和微生物,或提供腐败生物无法生存的环境。因此,鱼类保存的原理涉及一些支持微生物生长的属性,例如水分含量,水活动,温度和pH。这是由于无法获得足够的冰供应以及向内陆地区的运输和分配设施不良。取决于多样性和当地,在高峰季节延长了一到三个月,与雨季相吻合。鱼类保存的目的是防止有益健康的质量,营养价值和/或鱼类感觉质量的不良变化;并减少不良性质的化学,物理和生理变化并消除污染。随着世界上不断增长的人口的不断增长,需要将鱼类从一个地方存储和运输到另一个地方,因此必须保存鱼类,以提高其保质期并保持其营养价值,质地和风味。历史上腌制,干燥,吸烟,发酵和罐头是用于防止鱼变质并延长其保质期的方法。响应消费者对纹理,外观和口味的需求,开发了新方法,包括:冷却,冷冻和化学保存。鱼类保存和粮食安全联合国的粮食和农业组织(FAO,2000年)将粮食安全定义为“存在一种情况,当所有人(任何时候,所有人都有身体,社会和经济的机会,可以满足其饮食和饮食需求和粮食偏好,以实现其积极,健康和健康的生活”。因此,获得粮食安全的过程必须是可持续的,并维持基础结构和环境。