解决电子结构问题代表了量子计算机的一个有前途的应用领域。目前,人们投入了大量精力设计和优化近期量子处理器的量子算法,目的是使用有限的量子资源在选定的问题实例上超越经典算法。这些方法仍有望具有防止大规模和批量系统量子模拟的运行时间。在这项工作中,我们提出了一种策略,使用在量子模拟数据上训练的机器学习潜能将量子计算方法的范围扩展到大规模模拟。在当今的量子环境中应用机器学习潜能的挑战来自于影响电子能量和力的量子计算的几种噪声源。我们研究了选择各种噪声源的机器学习潜能的可训练性:统计、优化和硬件噪声。最后,我们从实际 IBM Quantum 处理器上计算的氢分子数据构建了第一个机器学习潜能。这已经使我们能够执行任意长且稳定的分子动力学模拟,优于所有当前分子动力学和结构优化的量子方法。
创办新企业或拓展现有企业:大多数情况下需要“租户装修”申请,家庭企业需要“居家办公许可证”。永久性室外标牌需要“标牌许可证”,横幅等临时标牌需要“临时广告展示”许可证 (TAD)。根据拟议业务或是否计划进行任何增建、外部改进或现场工作,可能需要向规划委员会提交其他类型的申请(例如,场地规划审查、调整委员会审查和设计审查)。规划委员会的工作人员可以核实哪些申请适用于您的情况。申请表和费用信息可在规划委员会网站的“申请”选项卡下获取。
纽约,2024 年 10 月 22 日 — 今天,贝莱德通过推出 iShares A.I. 扩大了投资者对技术和人工智能股票的投资渠道。创新和技术主动型 ETF(纽约证券交易所代码:BAI)和 iShares 技术机会主动型 ETF(纽约证券交易所代码:TEK)。虽然人工智能革命仍处于早期阶段,但贝莱德认为其长期影响将是深远的。“我们正处于智能革命的黎明,”贝莱德基本股票技术集团负责人 Tony Kim 表示。“这些主动型 ETF 可以帮助投资者抓住人工智能和先进技术全栈中超大且被忽视的投资机会。” 作为一个投资主题,贝莱德将人工智能视为一股具有广泛投资影响的巨型力量,无论是现在还是长期,它都为投资者提供了一个进入可能实现显着增长的市场的机会。利用贝莱德追求阿尔法收益的专业知识来捕捉不断发展的全球人工智能和技术趋势 1 BAI 和 TEK 都以流动性强、透明且税收效率高的 ETF 包装为投资者提供贝莱德最好的投资见解。基金由 Tony Kim 和 Reid Menge 管理,受益于贝莱德基本股票技术集团的专业知识。贝莱德在美国管理着 40 多个活跃 ETF,管理着 320 亿美元的资产。 2
摘要:增加蔬菜摄入量已成为世界范围内健康饮食习惯的一部分,因此,明确育种材料中的基因功能对于蔬菜改良以满足蔬菜新品种的可持续发展至关重要。然而,遗传转化费时费力,限制了对各类蔬菜作物基因功能的探索。病毒诱导的基因沉默(VIGS)由于缩短了实验周期并且不依赖于稳定的遗传转化,可以在植物中进行大规模、快速的基因沉默,为功能研究提供了绝佳的机会。VIGS可以加速模式植物研究,使蔬菜作物基因功能的分析和验证变得更加容易。此外,随着病毒介导的异源蛋白表达等技术的出现和CRISPR/Cas9技术的发展,病毒介导的遗传工具开创了遗传学和作物改良的新时代。本研究总结了蔬菜中VIGS和病毒诱导的基因编辑(VIGE)的最新成果。我们还确定了蔬菜中 VIGS 技术当前面临的几个挑战,为未来的研究提供指导。
摘要:泛基因组旨在代表一个物种或一组物种中存在的完整基因组多样性,捕捉个体之间的基因组结构差异。这种基因组信息与表型数据相结合,可用于识别与非生物胁迫耐受性、抗病性和其他理想性状有关的基因和等位基因。泛基因组中新结构变体的表征可以支持基因组编辑方法,例如成簇的规律间隔短回文重复序列和 CRISPR 相关蛋白 Cas (CRISPR-Cas),以更高的效率提供有关基因序列和变体特异性基因中新靶位的功能信息。本综述讨论了泛基因组在基因组编辑和作物改良中的应用,重点介绍了泛基因组准确识别植物基因组 CRISPR-Cas 编辑靶基因的潜力,同时避免了不利的脱靶效应。我们考虑了使用泛基因组参考资料应用 CRISPR-Cas 编辑的局限性以及克服这些局限性的潜在解决方案。
图 10 ZEISS Xradia Versa XRM 系列摘要。ZEISS Xradia Versa 平台提供 RaaD 功能、优化的对比度和出色的图像质量,适用于最广泛的样品类型。ZEISS Xradia 515 Versa 为该平台添加了最新的分辨率功能以及现代易用性和灵活性。ZEISS Xradia 6XX Versa 进一步增加了更高的吞吐量、增强的用户体验、更高的可靠性和更低的拥有成本,成为性能最高的下一代 3D X 射线显微镜。
1 马萨诸塞大学医学院 RNA 治疗研究所,美国马萨诸塞州伍斯特 01605。2 TriLink BioTechnologies,美国加利福尼亚州圣地亚哥。3 囊性纤维化基金会,CFFT 实验室,美国马萨诸塞州列克星敦 02421。4 马萨诸塞大学医学院生物信息学和整合生物学项目,美国马萨诸塞州伍斯特。5 同济大学生命科学与技术学院,上海 200092。6 麻省理工学院 David H. Koch 综合癌症研究所,美国马萨诸塞州剑桥。7 麻省理工学院化学工程系,美国马萨诸塞州剑桥。8 哈佛大学和麻省理工学院 Broad 研究所 Merkin 医疗变革技术研究所,美国马萨诸塞州剑桥。9 哈佛大学霍华德休斯医学研究所,美国马萨诸塞州剑桥 02138。 10 哈佛大学化学与化学生物学系,美国马萨诸塞州剑桥 02138。11 麻省理工学院医学工程与科学研究所,美国马萨诸塞州剑桥。12 哈佛-麻省理工学院健康科学与技术分部,美国马萨诸塞州剑桥。13 马萨诸塞大学医学院分子、细胞和癌症生物学系,美国马萨诸塞州伍斯特。14 马萨诸塞大学医学院分子医学系,美国马萨诸塞州伍斯特。15 马萨诸塞大学医学院李伟波罕见疾病研究所,美国马萨诸塞州伍斯特市 Plantation Street 368 号,邮编 01605。✉ 电子邮件:Wen.Xue@umassmed.edu
要实现拜登政府制定的雄心勃勃的脱碳目标,即到 2035 年实现 100% 清洁电力,到 2050 年实现净零排放经济,就需要大幅增加清洁和可再生能源在发电结构中的份额。为了以经济高效的方式实现这些脱碳目标,可再生能源需要增长到当前水平的几倍。输电系统无法处理预期的电力流量大幅增加;其容量和可用性不足导致电网拥堵,从而导致能源价格上涨并限制可再生能源。此外,随着预期的经济电气化导致未来需求大幅增加,电网的负担不断增加。REPEAT 项目的一份报告估计,要充分利用《通货膨胀削减法案》(IRA)提供的补贴,输电容量必须每年增长约 2.3%,是过去 10 年增长率的两倍多(Jenkins 等人,2022 年)。
Orbia Advance Corporation, SAB de CV (BMV: ORBIA*) 是一家由共同目标驱动的公司:改善世界各地的生活。Orbia 的业务涉及聚合物解决方案(Vestolit 和 Alphagary)、建筑和基础设施(Wavin)、精准农业(Netafim)、连接解决方案(Dura-Line)以及氟和能源材料(Koura)领域。Orbia 的五个业务集团共同致力于确保粮食和水安全、扩大信息访问和连接以及通过基础和先进材料、特种产品和创新解决方案推进脱碳和能源转型。Orbia 拥有一支由 24,000 多名员工组成的全球团队,商业活动遍及 100 多个国家,业务遍及 50 多个国家,全球总部位于波士顿、墨西哥城、阿姆斯特丹和特拉维夫。该公司在 2023 年创造了 82 亿美元的收入。要了解更多信息,请访问:orbia.com
b. 野战炮兵军官的任命分为三个基本类别:关键发展 (KD)、发展和拓展。关键发展任命是那些被认为对其核心部门军官的发展至关重要的任命。成功完成给定军衔的关键发展任命后,野战炮兵军官将被视为具有部门资格。野战炮兵军官的第一个关键发展任命是炮兵连指挥,由上尉担任。发展任命是那些增强作战能力的任命,但对军官的晋升并不那么重要,因此他们无法获得关键发展任命资格。所有任命都是发展性的。拓展任命是通过陆军内部和外部的任命机会有目的地扩展知识、能力和理解的任命。这些任命对于野战炮兵军官整个职业生涯的持续成长至关重要。拓展机会分为三个类别:战术、机构和学术。拓展通常发生在关键发展任命之后,但绝不会取代关键发展任命。