提出了一种采用 180 nm CMOS 工艺的上变频混频器。本研究详细阐述了几种混频器的类型、混频器的性能参数、混频器的拓扑结构以及提高混频器性能的设计技术。主要目的是提高增益、增加线性度和噪声系数。有四种金属层可供设计。对以前发表的研究进行了比较,并提出了低功耗混频器的最佳拓扑结构。关键词:混频器,噪声系数,变频增益,CMOS 1. 简介超宽带 (UWB) 系统是无线通信的主要技术之一。混频器是将 RF 信号转换为基带信号的关键。混频器是 RF 通信系统中最重要的元件之一。当两个不同的输入频率插入另外两个端口时,它被设计为在单个输出端口产生和频和差频。插入两个输入端口的两个信号通常是本振信号和输入(对于接收器)或输出(对于发射器)信号。要产生新频率(或新频率),需要非线性设备。射频混频器本质上是一种将信号从一个频率移到另一个频率的设备。混频器产生输入频率、LO 频率及其互调产物的谐波。这些谐波增加了混频器的非线性。设计混频器的基本目标是抑制谐波。理想的混频器是一个乘法器电路。理想的混频器将一个载波频率周围的调制转换到另一个载波频率。由于混频器是一种非线性设备,因此它无法执行频率转换。
腺嘌呤碱基编辑提供了一种基于镰状细胞疾病(SCD)的可行基因疗法,将镰状血红蛋白(HBS,βε6V)转化为G-Makassar血红蛋白(HBG,βE6A),一种天然发生的,非致病变体。但是,单独使用HB的HBG功能在很大程度上没有表征。我们提出了一种用于表征纯化的HBG-MAKASSAR以及HBGG和HBGS红细胞功能的小鼠模型。纯化的HBG-makassar表现为功能性血红蛋白,包括在缺氧下无聚合。HBG-MAKASSAR的氧和脱氧状态的结构表征显示出血红蛋白折叠的拓扑结构与βε6α突变没有变化。 红细胞功能分析,缺氧下的疾病倾向,血液计数和线粒体保留措施将HBGS RBC作为HBAS和HBSS之间的严重程度中间,器官功能与HBA相当。 HBGG类似于大多数指标的HBAA。 总结我们的结果表明,直接校正HBS对HBG-Makassar可以为SCD提供变革性疗法。HBG-MAKASSAR的氧和脱氧状态的结构表征显示出血红蛋白折叠的拓扑结构与βε6α突变没有变化。红细胞功能分析,缺氧下的疾病倾向,血液计数和线粒体保留措施将HBGS RBC作为HBAS和HBSS之间的严重程度中间,器官功能与HBA相当。HBGG类似于大多数指标的HBAA。总结我们的结果表明,直接校正HBS对HBG-Makassar可以为SCD提供变革性疗法。
简介 鉴于对满足射频系统要求的需求日益增加,作为关键组件的循环器已成为研究的主题。传统循环器通常基于采用带状线或微带技术设计的 Y 型结形状。带状线循环器易于集成且损耗低。这种循环器拓扑结构可以通过同轴连接器连接,采用 Drop-in 技术实现或内置于表面贴装器件 (SMD)。尽管成本较高,但同轴循环器具有比其他产品更高的 EMC 屏蔽和功率处理能力。此外,Drop-in 设备处理的功率较少,并且没有 EMC 屏蔽。最后,SMD 循环器的功率处理能力低于同轴循环器,但 EMC 屏蔽比 Drop-in 更好。面对日益增长的小型化、集成化和降低成本的需求,LTCC(低温共烧陶瓷)技术是应对这些挑战的有希望的候选技术。LTCC 技术是一种通过多层结构封装集成电路的技术。它由堆叠胶带组成,可防止结点出现气隙,并降低高功率空间应用的多重击穿风险。在过去的几年中,许多已发表的研究都集中在 LTCC 循环器的设计上 [1]-[2]。然而,它们大多数都是理论上的,只有少数专注于工业用途 [3]。因此,Exens-Solutions 与 CNES、Thales TRT 和 IMT Atlantique 合作,提出了 LTCC 技术来开发用于保护有源天线的 K 波段循环器。该循环器由 Exens-Solutions 根据与 CNES 商定的规格设计。IMT Atlantique 负责循环器的制造过程。铁氧体和电介质材料带由 Thales TRT 开发。因此,本文分为四个部分。第一部分介绍 LTCC 循环器规格并详细介绍材料特性。第二部分描述了建立设计规则的试运行。第三部分讨论了 LTCC 循环器的设计步骤和模拟。制造步骤和测量结果在最后一节中报告。LTCC 环行器规格初步提出的拓扑结构采用带状线拓扑结构来设计封装在封装中的 LTCC 环行器。这种拓扑结构的优点是可以缩小环行器体积并避免金属路径受到任何损坏。如图 1 所示,在 LTCC 结构中添加了信号和接地通孔,以确保其与 SMD 表面的互连。
- 下一代半导体、先进的器件概念和高温(宽带隙)功率半导体材料(SiC、GaN、金刚石) - 纯硅和/或 SiC 系统设计的新概念 - 允许更高电压和功率的半导体元件 - 用于系统集成和恶劣环境的先进材料(隔离、导热、无源、传感器),包括纳米结构材料和填充聚合物 - 超高功率密度系统和高温电子设备的新型互连技术 - 先进的热管理;高温磁性元件、电容器、传感器、控制 IC - 先进的 EMI 滤波和高水平的无源集成 - 通过标准化可大规模生产的电力电子构件来降低系统成本 - 功能系统集成(减少损耗、成本、重量和尺寸,优化冷却) - 进一步降低待机功率的拓扑结构 - 数字电源转换和智能电源管理 - 照明中智能和简单的调光概念;街道照明的智能控制;高效光源(LED/OLED)及其电力电子驱动器 - 更高集成度,如更紧凑的节能灯 - 机电一体化,如冰箱压缩机、空调和泵 - 低成本直接驱动器,如洗衣机 - 光伏太阳能转换器的新拓扑结构、更高效的光伏太阳能电池 - 分布式能源发电网络中电力电子负载管理 - 零缺陷设计和改进的系统可靠性,包括容错系统 - 多领域/级别建模和仿真;应力分析和内置可靠性
- 下一代半导体、先进设备概念和高温(宽带隙)功率半导体材料(SiC、GaN、金刚石) - 纯 Si 和/或 SiC 系统设计的新概念 - 允许更高电压和功率的半导体元件 - 用于系统集成和恶劣环境的先进材料(隔离、导热性、无源器件、传感器),包括纳米结构材料和填充聚合物 - 超高功率密度系统和高温电子设备的新型互连技术 - 先进的热管理;高温磁性元件、电容器、传感器、控制 IC - 先进的 EMI 滤波和高水平的无源集成 - 通过标准化可大规模生产的电力电子构件来降低系统成本 - 功能系统集成(减少损耗、成本、重量和尺寸,优化冷却) - 进一步降低待机功耗的拓扑结构 - 数字电源转换和智能电源管理 - 照明中的智能和简单调光概念;路灯的智能控制;高效光源(LED/OLED)及其电力电子驱动器 - 更高水平的集成,例如用于更紧凑的节能灯 - 机电一体化,例如用于冰箱压缩机、空调和泵 - 低成本直接驱动器,例如用于洗衣机 - 光伏太阳能转换器的新拓扑结构、更高效的光伏太阳能电池 - 分布式能源发电网络中电力电子的负载管理 - 零缺陷设计和改进的系统可靠性,包括容错系统 - 多域/级别建模和仿真;应力分析和内置可靠性
本课程中有两个主要目标:(1)了解我们大多数人以前从未见过的新型数学思想,以及(2)对数学的新欣赏。就像我们只能听音乐或艺术的讲座来真正对音乐或艺术获得真正的欣赏一样,我们也不能只通过听有关数学的讲座来真正欣赏数学。在本课程中,我们将进行数学。您不希望您从传统的意义上“擅长数学”,但是要求您好奇并愿意弄脏手(使用数学!)。我们将研究数学主题的选择,例如数字理论,无限,对称性,几何,图理论和拓扑结构。
图 1:信息子图提取的动机:(a)演示了从群体水平连接组数据中获取边推理矩阵的过程;(b)说明常用的社区检测结果(例如使用随机块模型)无法检测到任何信息子图;(c)显示现有密集子图发现结果的结果;(d)描述了一种理想的信息子图检测程序,该程序可以识别由信息边组成的有组织的、生物学上可解释的拓扑结构。(d)中的结果基于 ADSD 方法(详细信息请参阅结果部分)。
目的:癫痫相关的超同步神经元活动会导致广泛的功能网络中断,其范围超出致痫区。这种改变的功能网络拓扑结构被认为是导致认知障碍等非癫痫症状的介质。本研究的目的是证明局灶性癫痫患者在控制良好和生活质量高的情况下存在功能网络改变。方法:我们比较了 22 名局灶性癫痫患者和 16 名健康对照者,其图形指标来自源重建的静息态脑电图的功能连接(锁相值)。图形指标是在五个频带中预定义的网络密度范围内计算的。结果:就整体网络拓扑结构改变而言,我们观察到与健康对照者相比,癫痫患者的小世界指数显著增加。在局部层面,两个左半球区域显示出向更大的 alpha 带“中心度”的转变。结论:局灶性癫痫患者中存在细微的广泛功能网络改变,即使在以成功的抗癫痫药物治疗和高生活质量为特征的群体中也是如此。这些发现表明功能网络分析在癫痫中可能具有临床意义。意义:局灶性癫痫伴有整体和局部功能网络异常,这可能与非癫痫症状的持续有关。关键词:局灶性癫痫;网络分析;功能连接;源级脑电图;图论重点:
摘要 - 考虑到优化电动汽车性能的必要性以及高效传动系统配置对实现这一目标的影响,进行了一项简短的研究。本研究对电动汽车 (EV) 的传动系统进行了严格审查。此外,还介绍了适用于电动汽车的有前景的电机拓扑结构。此外,还从系统的角度研究了每种电动机的优缺点。大多数商用电动汽车由永磁电机或单感应式电机和标准机械差速传动系统驱动。考虑到这些,通过包括传动系统配置和不同类型的电池,进行了全面的审查。作者建议使用标准化驾驶循环来评估和对比电机。
摘要 为满足垃圾减量和电网调节灵活性的提高,全球范围内都在推进零废弃城市和能源互联网建设。基于垃圾堆存与处置需求,提出了垃圾处理设施能源供需多时间尺度模型。在此前提下,本文提出了基于多能源系统与垃圾处理设施协调运行以经济效益最大化的多能源垃圾处理系统(MEWDS)拓扑结构及其优化模型。通过仿真,对中国某城市不同垃圾处理场景下的垃圾堆存和多能源运行数据进行实例分析。提出的MEWDS优化模型可以使垃圾减量和经济效益达到最佳。同时,也能有效提高电网调节的灵活性。