在这项工作中,提出,开发,实施和测试,用于分析具有损害启动和进化的可变角度拖曳复合板的自适应丽兹模型。使用一阶剪切变形理论表示板运动学表示,而在给定负载步骤处的板平衡方程是通过最小化结构势能来获得的。本构行为是在连续损伤力学框架内建模的。尤其是通过在拉伸或压缩载荷中定义与纤维和矩阵相关的不可逆伤害指数来跟踪损害的启动和演变。然后,通过假设能量最小化中主要运动学变量的多项式RITZ近似来获得离散方程。初步测试表明,该方法作为单域方法的应用如何引起有问题的虚假效应的出现,这与吉布斯人伪像有关,因为所选的多项式基础无法代表损害定位。因此,提出了一种自适应多域技术来规避此类问题,该问题已通过基准测试成功验证。最终,提出了有关在渐进式载荷下具有损害演变的可变角度拖放板的原始结果。
内容区域工具栏 ................................................................................................ 155 工具栏按钮 ................................................................................................ 156 Markdown 编辑器 .............................................................................................. 157 Markdown 变体 .............................................................................................. 159 查看多列注释 ................................................................................................ 159 输入注释 ...................................................................................................... 160 在注释中使用拖放功能 ............................................................................. 162 注释编辑器中的 Tab 键功能 ............................................................................. 162 折叠和展开注释部分 ............................................................................................. 163 选择注释样式 ............................................................................................. 163 更改注释中的文本大小 ............................................................................................. 166 段落对齐 ............................................................................................................. 166 所选文本的自定义字体系列 ............................................................................. 166 添加表格 ............................................................................................................. 167 表格控件 ............................................................................................................. 169 表格主题编辑器 ............................................................................................. 170 插入表格目录................................................................................ 171 拼写检查.............................................................................................. 172 插入水平线.............................................................................................. 173 创建复选框列表................................................................................... 174 链接到笔记中的想法................................................................................ 176 创建 Web 链接............................................................................................. 176 从笔记快速链接和创建想法............................................................................. 178 在内容区域捕获和插入图像.................................................................... 179 数学表达式............................................................................................. 180 笔记中图像的详细信息............................................................................. 180 在笔记中查找和替换..................................................................................... 181 打印笔记................................................................................................. 181 导出笔记 ................................................................................................ 182 其他笔记功能 .............................................................................................. 182 添加和查看想法附件 .............................................................................. 184
沉浸式虚拟现实 (VR) 环境是探索认知过程(从记忆和导航到视觉处理和决策)的强大工具,并且可在自然但受控的环境中进行。因此,它们已被用于不同物种和各种研究小组。不幸的是,在这样的环境中设计和执行行为任务通常很复杂。为了应对这一挑战,我们创建了 DomeVR,这是一个使用虚幻引擎 4 (UE4) 构建的沉浸式 VR 环境。UE4 是一个功能强大的游戏引擎,支持照片级逼真的图形,并包含专为非程序员设计的可视化脚本语言。因此,可以使用拖放元素轻松创建虚拟环境。DomeVR 旨在使这些功能可用于神经科学实验。这包括一个日志记录和同步系统,用于解决 UE4 固有的时间不确定性;一个交互式 GUI,供科学家在实验期间观察受试者并动态调整任务参数,以及一个圆顶投影系统,用于在非人类受试者中实现完全任务沉浸。这些关键功能是模块化的,可以轻松单独添加到其他 UE4 项目中。最后,我们提供了原理验证数据,重点介绍了 DomeVR 在三个不同物种(人类、猕猴和老鼠)中的功能。
在存在其他车辆或障碍物的情况下,未经拖放的海事系统的安全操作是一个主要问题。通常,感知算法利用传感器数据来识别必须避免的障碍,并且AI算法用于解释用于导航和对象回避算法的原始传感器数据。但是,感知算法通常在计算上很昂贵。在本文中,我们提出了一种有效的方法,该方法采用不依赖于训练有素的模型或AI匹配的计算高效技术,使用范围或点云形式的原始LIDAR数据来检测障碍。该方法将传感器读数转换为机器人的局部坐标系,将其投影到占用图上,并应用有效的图像处理技术来检测障碍物。作为一种快速且易于实现的算法,拟议的工作为基于激光雷达的海上感知应用提供了实用的解决方案。本文进一步侧重于检测具有简单形状(例如浮标或图腾)的接近物体,这些物体通常在近岸和近海岸海事环境中使用。具有有效检测障碍的能力,我们的算法可以帮助确保在操纵这些环境时安全导航。结果表明,该算法可以准确地检测出具有最小假阳性的浮标和图腾。
在利润和估值的转折点上有多个方面:鉴于其收购的完整整合,TSCS处于跨地理/部门交叉销售学习的拐点,我们看到运营杠杆转化为实质性的利润增长。我们将ROIC(税前)估计为16-17%,为16-17%,作为采集保费(分类为商誉/无形资产)拖放返回概况。我们估计收入在23-26财年以9%的复合年增长率增长,由ISC的强劲增长(CAGR)强劲增长(19%CAGR),并且NS的增长率很大(1HFY24抵消量增加的货运率下降)。运营利润率将在未来3年的运营杠杆后提高230bps,尤其是在SCS领域(SCS将在26财年贡献57%/67%的收入/EBITDA)。我们以SOTP为基础对电视进行评估,a)物流业务的价值为12xSep'25 ev/ebitda(c.inr 260/sh)和b)隐含的估值为29亿印度卢比,降低了其在TVS ILP(ILP 6/Sh)中的25.2%股权,以达到265/Sh的SEP'24TP,该估值是Anr 265/Sh的SEP'24TP,A潜在的23%,23%,23%,23%;我们估计未来3年的IRS潜力在ISCS LED运营利润增长上(可以为进一步的重新评估铺平道路)。
第一单元 HCI 基础 人类:输入/输出通道 – 内存 – 推理和解决问题;计算机:设备 – 内存 – 处理和网络;交互:模型 – 框架 – 人体工程学 – 风格 – 元素 – 交互性 – 范例。第二单元 设计与软件过程 交互设计基础 – 过程 – 场景 – 导航 – 屏幕设计 – 迭代和原型设计。软件过程中的 HCI – 软件生命周期 – 可用性工程 – 实践中的原型设计 – 设计原理。设计规则 – 原则、标准、指南、规则。评估技术 – 通用设计。第三单元 模型与理论 认知模型 – 社会组织问题和利益相关者要求 – 通信与协作模型 – 超文本、多媒体和 WWW。单元 IV 移动 HCI 移动生态系统:平台、应用框架 - 移动应用类型:小部件、应用、游戏 - 移动信息架构、移动 2.0、移动设计:移动设计元素、工具。单元 V 网页界面设计 设计网页界面 - 拖放、直接选择、上下文工具、覆盖、嵌入和虚拟页面、流程。案例研究。总计:45 节课 教材: 1.Alan Dix、Janet Finlay、Gregory Abowd、Russell Beale,“人机交互”,第 3 版,Pearson Education,2004 年(UNIT I、II 和 III) 2.Brian Fling,“移动设计与开发”,第一版,O'Reilly Media Inc.,2009 年(UNIT –IV) 3.Bill Scott 和 Theresa Neil,“设计 Web 界面”,第一版,O'Reilly,2009 年。(UNIT
第一单元 人机交互基础 人类:输入/输出通道 – 内存 – 推理和解决问题;计算机:设备 – 内存 – 处理和网络;交互:模型 – 框架 – 人机工程学 – 风格 – 元素 – 交互性 – 范例。 第二单元 设计与软件过程 交互设计基础 – 过程 – 场景 – 导航 – 屏幕设计 – 迭代和原型设计。软件过程中的人机交互 – 软件生命周期 – 可用性工程 – 实践中的原型设计 – 设计原理。设计规则 – 原则、标准、指南、规则。评估技术 – 通用设计。 第三单元 模型与理论 认知模型 – 社会组织问题和利益相关者要求 – 通信与协作模型 – 超文本、多媒体和万维网。第四单元 移动 HCI 移动生态系统:平台、应用框架 - 移动应用类型:小部件、应用、游戏 - 移动信息架构、移动 2.0、移动设计:移动设计元素、工具。 第五单元 网页界面设计 设计网页界面 - 拖放、直接选择、上下文工具、覆盖、嵌入和虚拟页面、流程流。案例研究。 总计:45 节课 教科书: 1. Alan Dix、Janet Finlay、Gregory Abowd、Russell Beale,《人机交互》,第三版,Pearson Education,2004 年(第一单元、第二单元和第三单元) 2. Brian Fling,《移动设计和开发》,第一版,O'Reilly Media Inc.,2009 年(第四单元) 3. Bill Scott 和 Theresa Neil,《设计网页界面
摘要 建筑项目是刺激经济的关键因素,可以创造就业机会并吸引投资者。这些项目效率低下,资源利用不足。木材是建筑项目的关键投入之一,如果管理不善,会导致项目失败。本研究采用横断面调查设计,针对内罗毕及其周边地区六个经济适用房项目的 73 名项目经理进行调查。采用分层抽样技术,将受访者按项目分组。使用拖放式抽样技术收集数据;然后采用回归和相关等统计技术来验证假设。研究发现,技术、组织、社会、法律和环境因素对内罗毕经济适用房项目的建筑木材废物管理有积极影响。研究进一步发现,适当的社区参与,特别是在建筑木材废物管理中使用性别卡,有助于成功和可持续的建筑项目。该研究建议采用模块化施工方法大规模生产经济适用住房,使用BIM等设计可视化工具,行业监管机构如NEMA和NCA开展可持续建筑需求和方法方面的能力建设计划,促进建筑工地的性别平等,加强对木材产品采购的管理控制,最后制定和执行有关政府回收设施可达性和接近性的政策。
现代添加剂制造技术的积极发展,即基于融合沉积建模(FDM)的连续纤维挤出,表明了它们基于纤维聚合物复合材料创建高级材料的重要潜力。这些材料在航空业中广泛使用,但是它们用作飞机组件的使用受到满足许多要求的限制。这样的要求之一是火焰阻力。对于此类应用,至关重要的是,在集成之前,聚合物复合材料被认为符合类型证书。本研究论文提出了一项研究的结果,该研究的结果3D打印了具有多碳酸盐基质的连续增强聚合物复合材料,具有增强的机械性能,并进行了火焰耐药性测试,以证明印刷材料在航空应用中的可行性。该研究涵盖了一系列界面剪切强度,拉伸强度和火焰耐药性测试。该研究使用ASTM D638-10,ASTM D635-22,光学显微镜和浸入矩阵中的单个拖放测试的3D打印复合材料的详细表征。使用连续的碳纤维共截止使材料的拉伸强度(239.29 MPa)与未固化的聚碳酸酯(54.92 MPa)相比,增加了四倍。对印刷连续增强的聚碳酸酯的火焰耐药性的调查结果表明,该复合材料在每次火焰施用后的燃烧时间少于30秒。此外,双火施用后一系列五个样本的总燃烧时间不超过250秒,平均为56秒。获得的结果得出的结论是,连续加固的聚碳酸酯是用于飞机设计中的可行材料。为了进一步支持提出的印刷技术的使用,无人驾驶飞机的框架是由连续增强的聚碳酸酯制造的。
在本文中,我们提出了一种用于边缘系统的新设备类感知的修剪方法,即OCAP。背后的动机是,深度神经网络(DNN)模型通常经过大型数据集训练,以便他们可以学习更多的多样性功能并被概括以准确预测众多类别。一些作品表明某些功能(频道)仅与某些类有关。和边缘系统通常在系统检测到的特定环境中实现。结果,为特定边缘环境实施一般培训模型会导致不必要的冗余。同时,将一些数据和模型转移到云中以进行个性化会导致隐私问题。因此,我们可能有一种在设备上意识到的修剪方法来删除与类无关紧要的通道,而边缘系统主要观察到,从而减少了模型的浮点操作(拖放),记忆足迹,潜伏期,潜伏期,能源效率,提高能量效率,并提高了相对较高的类别的准确性,并在同时保护了SITUD DATA DAPAIN PLISTERS PLASSICS。OCAP提出了一种基于输入图像的中间激活的新型类感知的修剪方法,以识别类 - 近距离的通道。此外,我们提出了一种基于KL差异的方法,以选择有效调整修剪模型的多样性和代表性数据。实验结果显示了OCAP的有效性和效率。与最先进的类感知的修剪方法相比,OCAP具有更好的准确性和更高的压缩比。代码可在https://github.com/mzd22222/ocap上获得。此外,我们在Nvidia Jetson Nano,Nvidia Jetson TX2和Nvidia Jetson Agx Xavier上评估了OCAP,在效率方面,实验结果证明了OCAP在边缘系统上的适用性。