Bucyrus Dragline 8750 可每周 7 天、每天 24 小时运行,每次铲运可挖掘 116 立方米的土方,相当于 58,000 个两升水瓶。平均可运行 40 年,因此在全球露天采矿作业中得到广泛使用。拖缆有 45 种不同规格,每种都有专门的应用工程师。8750 系列具有多种铲斗容量,吊臂长度可达 132.5 米。挖掘深度可达 79.8 米。它是世界上最大的移动设备之一;但当我们说移动时,我们并不是指速度快!移动拖缆并非一朝一夕之功,尤其是 Bucyrus。它的额定悬挂负载高达 344,736 公斤,其近似工作重量超过 7.5 吨。它始终由西门子交流驱动器供电。8750 系列有多种款式,其中最高端的是 8750D3。它使用无齿轮交流直接驱动进行提升和拖动 - 其优势在于效率。它允许快速填充铲斗,并且没有提升和拖动传动装置也减少了维护。电力由公用设施线路为交流驱动器供电 - 巨大的功耗意味着直接连接到电网通常是最有效的解决方案。拉铲挖掘机的工作原理 1.提升铲斗 铲斗通过强力提升钢丝绳悬挂在拉铲吊臂上的提升联轴器上。
▪ 海上活动涉及许多危险和风险,既包括人员、财产,也包括日程安排。▪ 在探险期间,我将遇到摇晃的甲板、潮湿和不平整的行走表面、甲板上的拖缆和电缆、起重机升降操作、转移到船舶小艇以及与海上工作船相关的其他危险。我理解这些风险是探险所固有的。▪ 虽然经过了广泛的测试,但泰坦潜水器既未获得商业认证,也未投保。我将需要为潜水和所有探险活动签署广泛的责任豁免书。▪ 我理解,没有任何保证可以保证任何一次潜水都能到达泰坦尼克号或沉船或沉船现场的特定位置。▪ 我理解潜水队将在任务开始前分配,我在潜水序列中的位置可能会受到设备故障或天气延误的影响,而其他位置则不会。▪ 我理解,作为船员,我有责任履行本协议,如果我未能履行本协议,可能会影响任务或探险的成功。我理解,如果我未能履行这一义务,我已支付的任何金额或押金也将被没收。 ▪ 我能够在波涛汹涌的大海中登上小船(例如,充气式 Zodiacs 型小艇)。 ▪ 探险开始时,我将年满 18 岁。 ▪ 我能够表现出良好的平衡能力、机动性和灵活性(爬上 6 英尺高的梯子、携带 20 磅的重物等)。 ▪ 我持有有效护照,可以合法前往加拿大。 ▪ 我将遵守探险队队长、船长、潜水器飞行员和飞机驾驶员要求的所有安全和操作协议。 ▪ 我理解,在整个探险过程中,严格禁止使用非处方药物。 我理解,在用于抵达泰坦尼克号沉船地点的商业船只上禁止饮酒。 如果在探险期间发现违禁物质,我理解,我可能失去参加潜水的机会,并可能丧失全部任务支持费用。 ▪ 我理解探险队长有权出于安全或其他合理考虑,限制或取消我参加任何潜水活动。 ▪ 我将如实告知 OceanGate 任何可能影响我安全参加探险活动的健康或其他状况。 ▪ 我理解探险的每个阶段都存在一定程度的危险和不确定性。从本质上讲,探索未知区域和使用新材料、技术和合作伙伴可能会导致不可预测的延误或无法实现探险目标。
(https://maps.ccom.unh.edu/portal/apps/webappviewer/index.html?id=28df035fe82c423cb3517295d9 bbc24c#. 2021 年 12 月 10 日) ........................................................................................................................... 20 图 19:R/V Gulf Surveyor (http://ccom.unh.edu/facilities/research-vessels/rv-gulf-surveyor)。 .......... 21 图 20:RVGS 图,其中包含关键位置和拖曳点相对于船舶参考点的偏移(未按比例绘制)。 ............................................................................................................................. 21 图 21:安装了拖缆的 R/V Gulf Surveyor 甲板上的 Klein 4K-SVY 侧扫。 ............................................................................................. 23 图 22:具有声学阴影、距离尺度、第一次回波和水柱的典型 SSS 数据示例。 ........................................................................................................................................................... 24 图 23:带有集成表面声速探头的 Kongsberg EM2040P MBES。 (https://www.kongsberg.com/maritime/products/ocean-science/mapping-systems/multibeam-echo- sounders/em-2040p-mkii-multibeam-echosounder-max.-550-m/) ........................................................................... 25 图 24:安装在 R/V Gulf Surveyor 中心支柱上的 EM2040P(照片:NOAA 的 Patrick Debroisse 中尉)。 ........................................................................................................................................... 26 图 25:在 50m 范围内布置用于位置置信度检查的 SSS 线。 ........................................................................... 27 图 26:相对于 MBES 目标位置(红色)的 SSS 接触位置(蓝色)。 ......................... 28 图 27:地理参考框架和船舶参考框架中的接触位置误差。接触位置主要位于 MBES 位置的东面。 ......................................................................... 28 图 28:应用地图校正后的 SSS 接触位置。 ......................................................................... 29 图 29:应用地图校正后,在地理和船舶参考框架中看到的 SSS 接触位置 ............................................................................................................................. 29 图 30:测量区域,其中 60m 和 80m 线路平面图以红色显示。 ........................................................................... 30 图 31:掩盖马赛克(左)隐藏接触,透过马赛克(右)显示接触。 ...... 32 图 32:使用自动所有数据,显示应用增益和定位校正之前的所有线路的 SSS 马赛克。覆盖在 RNC 13283 上。...................................................................................................... 33 图 33:使用 Auto-All 数据可视化应用地图校正和 EGN 后的 SSS。....... 34 图 34:DTM(顶部)显示折射伪影,与 ping 数据(底部)中看到的伪影相同。...................................................................................................................................................................... 35 图 35:EM2040P MBES 数据的全覆盖 DTM............................................................................................................. 36 图 36:EM2040P 数据从天底滤波到 45º 后的 DTM。............................................................................. 37 图 37:EM2040P 以 300 kHz 和 50cm 分辨率收集的 MBAB。西北采集点在左侧,东南采集点在右侧。后向散射强度以分贝表示,默认比例为 10 到 -70dB。 ........................................................................................................................... 38 图 38:调整后的 NW MBES 数据可视范围为 -4 至 -28db.................................... 39 图 39:SSS 接触位置(左)和 MBES 假定的“真实”位置(右)。........................................ 40 图 40:应用地图校正后的 SSS 接触位置。原始 SSS 位置以绿色标记标注。............................................................................................................. 41 图 41:地图校正前(左)和地图校正后(右)的另一个示例,最初显示两条独立的龙虾笼线。............................................................................................. 41 图 42:应用地图校正后,两条 SSS 线之间的差异约为 7.5 米。红色框突出显示了沙波应重叠的区域。............................................................................. 42 图 43:NW 采集站点:叠加之前的 MBES(顶部)、SSS(中)和 MBES 后向散射(底部)。 ........................................................................................................................................................... 44 图 44:SE 采集点:叠加前的 MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)。 ........................................................................................................................................... 45左侧为西北方向采集点,右侧为东南方向采集点。后向散射强度以分贝表示,默认范围为 10 至 -70dB。 ........................................................................................................................... 38 图 38:调整后的西北方向 MBES 数据可视范围为 -4 至 -28db........................................ 39 图 39:SSS 接触位置(左)和 MBES 假定的“真实”位置(右)。............................................................. 40 图 40:应用地图校正后的 SSS 接触位置。原始 SSS 位置以绿色标记标注。 .................................................................................................................... 41 图 41:地图校正前(左)和地图校正后(右)的另一个示例,最初显示两条独立的龙虾笼线。 .................................................................................................................... 41 图 42:应用地图校正后,两条 SSS 线之间的差异约为 7.5 米。红框突出显示了沙波应该重叠的区域。 ........................................................................... 42 图 43:NW 采集点:MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)在叠加之前。 ............................................................................................................................................................. 44 图 44:SE 采集点:MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)在叠加之前。 ............................................................................................................................................................. 45左侧为西北方向采集点,右侧为东南方向采集点。后向散射强度以分贝表示,默认范围为 10 至 -70dB。 ........................................................................................................................... 38 图 38:调整后的西北方向 MBES 数据可视范围为 -4 至 -28db........................................ 39 图 39:SSS 接触位置(左)和 MBES 假定的“真实”位置(右)。............................................................. 40 图 40:应用地图校正后的 SSS 接触位置。原始 SSS 位置以绿色标记标注。 .................................................................................................................... 41 图 41:地图校正前(左)和地图校正后(右)的另一个示例,最初显示两条独立的龙虾笼线。 .................................................................................................................... 41 图 42:应用地图校正后,两条 SSS 线之间的差异约为 7.5 米。红框突出显示了沙波应该重叠的区域。 ........................................................................... 42 图 43:NW 采集点:MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)在叠加之前。 ............................................................................................................................................................. 44 图 44:SE 采集点:MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)在叠加之前。 ............................................................................................................................................................. 45........... 42 图 43:NW 采集点:MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)在叠加之前。 ............................................................................................................................................................. 44 图 44:SE 采集点:MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)在叠加之前。 ............................................................................................................................................................. 45........... 42 图 43:NW 采集点:MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)在叠加之前。 ............................................................................................................................................................. 44 图 44:SE 采集点:MBES(顶部)、SSS(中间)和 MBES 背向散射(底部)在叠加之前。 ............................................................................................................................................................. 45