1 南洋理工大学生物科学学院,新加坡 637551,新加坡 2 南阿拉巴马大学生物系,阿拉巴马州莫比尔 36688,美国 3 墨尔本大学生物科学学院,维多利亚州帕克维尔 3010,澳大利亚 4 波鸿鲁尔大学生物与生物技术学院,德国波鸿 44810 5 南洋理工大学新加坡环境生命科学工程中心,新加坡 637551,新加坡 6 南方科技大学医学院,深圳市南山区 518055,中国 7 哥本哈根大学植物与环境科学系(PLEN),丹麦 1871 Frederiksberg C 8 哥本哈根大学哥本哈根植物科学中心,丹麦 1871 Frederiksberg C 9 上海交通大学-南京大学杂交水稻国家重点实验室代谢与发育科学联合国际研究实验室上海交通大学生命科学与技术学院阿德莱德农业与健康联合中心, 上海 200240
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
气孔防御对于防止病原体进入和进一步定植的植物很重要。质外塑性活性氧(ROS)在激活细菌后激活气孔闭合方面起着重要作用。然而,下游事件,尤其是对警卫细胞中胞质氢(H 2 O 2)的影响的因素,对警卫细胞中的特征很少了解。我们使用拟南芥在气孔免疫反应期间使用涉及倍增运动ROS爆发的拟南芥突变体来研究H 2 O 2传感器ROGFP2-ORP1和ROS特异性荧光素探针。出乎意料的是,NADPH氧化酶突变体RBOHF通过警卫细胞中与病原体相关的分子模式(PAMP)对ROGFP2-ORP1的过度氧化。但是,气孔闭合与高ROGFP2-ORP1氧化没有密切相关。相比之下,RBOHF对于通过基于荧光素的探针在后卫细胞中测得的PAMP介导的ROS产生是必需的。与以前的报道不同,RBOHF突变体(而不是RBOHD)在小型触发的气孔闭合中受到了损害,导致对细菌的气孔防御性缺陷。有趣的是,RBOHF还参与了PAMP诱导的凋亡碱化化。在H 2 O 2介导的气孔闭合100μm中,RBOHF突变体也部分受损,而较高的H 2 O 2浓度最高为1 m m,并未促进野生型植物中的气孔闭合。我们的结果提供了有关塑料和胞质ROS动力学之间相互作用的新见解,并突出了RBOHF在植物免疫中的重要性。
CRISPR/CAS系统作为基因组编辑的生物技术工具的应用已彻底改变了植物生物学。最近,曲目通过CRISPR-kill扩展,通过组织表达消除基因组,从而使CRISPR/CAS介导的组织工程能够。使用金黄色葡萄球菌(SACAS9)的Cas9核酸酶,CRISPR-kill依赖于保守重复基因组区域中多个双链断裂(DSB)的诱导,例如rDNA,从而导致靶细胞的细胞死亡。在这里,我们表明,除了组织特异性表达的空间控制外,在拟南芥中,CRISPR介导的细胞死亡的时间控制是可行的。我们建立了一个化学诱导的组织特异性杀伤系统,该系统允许通过荧光标记同时检测靶细胞。作为概念证明,我们能够消除横向根和消融根干细胞。使用多组织启动子,我们在某些发育阶段在不同器官的定义时间点诱导靶向细胞死亡。因此,使用此系统使得有可能获得对某些细胞类型的发育层的新见解。除了在植物中实现组织工程外,我们的系统还提供了一种宝贵的工具,可以通过位置信号传导和细胞间通信来研究开发植物组织对细胞消除细胞的反应。
肉质果实形状是影响水果使用和消费者偏好的重要外部品质性状。因此,改变果实形状已成为作物改良的主要目标之一。然而,人们对果实形状调控的潜在机制了解甚少。在本综述中,我们以番茄、黄瓜和桃子为例,总结了肉质果实形状调控遗传基础的最新进展。比较分析表明,OFP-TRM(OVATE 家族蛋白 - TONNEAU1 募集基序)和 IQD(IQ67 结构域)通路可能在调节果实形状方面有所保留,它们主要通过调节肉质果实物种之间的细胞分裂模式。有趣的是,发现 FRUITFULL(FUL1)、CRABS CLAW(CRC)和 1-氨基环丙烷-1-羧酸合酶 2(ACS2)的黄瓜同源物可调节果实伸长。我们还概述了拟南芥和水稻中 OFP-TRM 和 IQD 途径介导的果实形状调控的最新进展,并提出 OFP-TRM 途径和 IQD 途径通过整合植物激素(包括油菜素类固醇、赤霉酸和生长素)和微管组织来协调调节果实形状。此外,还展示了 OFP、TRM 和 IQD 家族成员的功能冗余和分歧。本综述概述了目前关于果实形状调控的知识,并讨论了未来研究中需要解决的可能机制。
© 作者 2023。开放存取 本文根据知识共享署名 4.0 国际许可进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否做了更改。 本文中的图片或其他第三方资料包含在文章的知识共享许可中,除非资料的致谢中另有说明。 如果资料未包含在文章的知识共享许可中,且您的预期用途不被法定规定允许或超出允许用途,则需要直接从版权所有者处获得许可。 要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/ 。知识共享公共领域贡献豁免(http://creativeco mmons.org/publicdomain/zero/1.0/)适用于本文中提供的数据,除非数据来源中另有说明。
摘要:定量实时聚合酶链反应(QPCR)是一种广泛使用的方法,用于分析生殖组织中的基因表达模式以及在突变背景中检测基因水平。该技术需要稳定的参考基因才能使靶基因的表达水平归一化。尽管如此,大量出版物继续呈现QPCR结果,该结果标准化为单个参考基因,据我们所知,在拟南芥的特定生殖组织中未对多个参考基因进行比较评估。在此,我们在两个条件套装中评估了十个候选参考基因(UBC9,ACT7,GAPC-2,RCE1,PP2AA3,TUAA2,SAC52,SAC52,SAC52,SAC52,SAC52和His 3.3)的表达稳定水平:在两个条件套件中:一个集合:一个集合:一个跨度开发以及使用不同的基因类别的型型型。使用Reffinder工具进行了稳定性分析,该工具结合了四种统计算法(Genorm,Normfinder,Best Keepere和比较∆ CT方法)。我们的结果表明,RCE1,SAC52和TUA2在不同的发育阶段具有最稳定的表达,而YLS8,His3.3和ACT7是突变研究中归一化的最高级别参考基因。此外,我们通过分析与繁殖有关的基因的表达模式验证了我们的结果,并检查了在已发表的突变背景中这些基因的表达。总体而言,我们为塔利亚纳曲霉的生殖组织提供了适当的参考基因库,这将在这种情况下促进进一步的基因表达研究。更重要的是,我们提出了一个框架,该框架将促进对任何科学领域中基因表达的一致,准确的分析。同时,我们强调了明确定义的相关性,并描述了与qPCR相关的实验条件,以提高科学可重复性。
图 1 胚珠切片图。A、B 野生型;C、D ino-1 突变体。所有胚珠的雌蕊端都朝右。(a)野生型胚珠处于第 2-IV 阶段,内珠被 (IIs) 和外珠被 (OIs) 已从合点开始发育。(b)野生型胚珠处于第 3-VI 阶段,OI 包围 II、珠心和合点区域。OI 的不对称扩张使珠孔开口位于胚珠的雌蕊端侧。(c)ino-1 突变体胚珠处于第 2-IV 阶段,其中只有 II 从合点开始发育。(d)ino-1 突变体胚珠处于第 3-VI 阶段,II 已覆盖珠心,但 OI 缺失导致珠孔朝向胚珠的雌蕊基部侧。 (a) 中的条在所有面板中均为 50 μ m。图表基于 Baker 等人(1997 年)和 Vijayan 等人(2021 年)。阶段来自 (Schneitz 等人,1995 年)。c,合点;f,珠索;i,内珠被;n,珠心;o,外珠被;*,珠孔。
摘要:III类WRKY转录因子在植物应对多种非生物胁迫和次生代谢中起着至关重要的作用,但WRKY66的进化和功能尚不清楚。本研究对WRKY66同源物进行追溯,发现其经历了基序的获得与丢失以及纯化选择。系统发育分析表明145个WRKY66基因可分为三个主要进化枝(A~C进化枝)。替代率检验表明WRKY66谱系与其他谱系有显著差异。序列分析显示WRKY66同源物具有保守的WRKY和C2HC基序,且平均丰度中关键氨基酸残基的比例更高。AtWRKY66是一个核蛋白,可受盐和脱落酸诱导的转录激活因子。同时,在盐胁迫和脱落酸处理下,由成簇的、规律间隔的、短回文重复序列/CRISPR-相关9(CRISPR/Cas9)系统产生的Atwrky66敲低植物的超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性以及种子发芽率均低于野生型(WT)植物,但相对电解质渗漏(REL)较高,表明敲低植物对盐胁迫和脱落酸处理的敏感性增加。此外,RNA-seq和qRT-PCR分析表明,敲低植物中参与应激反应的脱落酸介导的信号通路中的几个调控基因受到显著调控,表现为基因表达更温和。因此,AtWRKY66可能在盐胁迫反应中起正调控作用,可能参与脱落酸介导的信号通路。
摘要:促进植物生长细菌(PGPB)可以通过促进养分摄取,氮固定,防止病原体,胁迫耐受性和/或增强植物产生的生产来增强植物健康。驱动植物 - 细菌关联的遗传决定因素仍在研究中。为了鉴定与对PGPB有反应的性状高度相关的遗传基因座,我们使用了用Azoarcus olearius dqs-4 t处理的拟南芥种群进行了全基因组关联研究(GWAS)。表型,通过改善,抑制或不影响根系或射击特征,对细菌治疗的305次拟南芥饰物对细菌治疗的反应不同。GWA映射分析鉴定了几个与初级根长或根新鲜重量相关的预测基因座。进行了两项统计分析,以缩小潜在基因候选物,然后进行单倍型块分析,从而鉴定出与拟南芥根新鲜重量对细菌接种的反应性相关的11个基因座。我们的结果表明,植物对A. olearius dqs-4 T响应接种的能力的差异很大,同时揭示了与所测量的生长性状相关的基因座的相当复杂性。这项研究是可持续繁殖策略的有希望的起点,用于未来的种植实践,可以采用有益的微生物和/或根部微生物组的修改。