本虚拟设计和施工 (VDC) 要求介绍了支持纽约和新泽西港务局 (“港务局”) 实施建筑信息模型 (BIM) 和计算机辅助设计和绘图 (CADD) 的信息、管理和技术规范。港务局的要求适用于项目的整个生命周期,从概念设计到施工、收尾和运营。
摘要 基于模型的系统工程 (MBSE) 是在复杂系统开发中端到端使用数字模型的基本方法。特别是航空业,其系统复杂性不断增加,需要新的概念和方法来克服生态和社会经济挑战。因此,需要特定领域的模型来设计和评估系统,以支持各种系统调查,例如需求管理、安装空间优化或故障分析。与使用孤立的数字子模型、自然语言文档和纯物理原型相比,这些大多是异构系统的端到端耦合和链接具有许多优势(例如更短的开发时间)。此外,数字化允许多个专家团队在同一虚拟产品上进行全球和跨学科的协作。由于这种方法对于飞机客舱配置特别有前景,德国航空航天中心 (DLR) 开发了一个虚拟开发平台,用于飞机客舱及其系统的概念设计。因此,可以快速生成客舱配置的虚拟原型,以便在早期设计阶段可视化和研究新概念。通过功能系统架构和可执行系统架构模型扩展概念舱系统设计流程,可促进信息可追溯性、早期故障检测
评估人工智能对印尼英语学习者写作技能的影响 卡哈鲁丁教育与教师培训学院,印尼望加锡伊斯兰州立大学(UIN) 摘要 --- 带有人工智能的电子设备促进了高等学校的学习-教学过程。本研究将人工智能在阅读教学中的应用和反馈作为自变量,以提高学生的写作技能作为因变量。学生对这种教学的态度是中介变量。这项研究是在望加锡市的高等学校进行的。研究工具是向100名高等学校学生分发的问卷,但只处理了83名学生。对数据进行了路径分析。研究结果:1)使用人工智能教授阅读对学生的写作没有直接影响,而是通过态度间接产生影响。2)讲师的反馈实际上通过态度对学生的写作有直接和间接的影响。3)通过态度阅读和反馈对学生写作技能提高的贡献率为34.8%。关键词 --- 人工智能、态度写作、反馈、阅读。介绍 COVID-19 大流行的爆发是一场全球灾难,扰乱了人类生活的各个方面。但是,我们必须明智地处理这个问题。在教育领域,它强制在虚拟学习教学中使用技术。许多讲师认为这不是最佳应用。不可否认的是,在这次 COVID-19 爆发之前,学习教学过程仍然以传统的面对面课堂学习模式为主,没有利用技术提供的设施。另一方面,应该利用学习教学过程提供的各种虚拟设施来应对技术进步。因此,研究人员认为,政府通过政策强制实施的这种虚拟学习教学可能会对望加锡高等学校的学习教学产生积极或消极的影响
等离子体与航天器相互作用静电充电实验室 (ECLIPS) 研究真空室最近已作为科罗拉多大学博尔德分校自动驾驶汽车系统实验室的一部分投入使用。实验性航天器充电研究设施允许在类似太空的环境中开展与带电天体动力学相关的实验。本文讨论了真空室的开发、特性和当前功能,其中包括一系列提供电子、离子和光子通量的源,用于表征电子通量、X 射线和电位的探测器,以及各种辅助组件以确保系统的安全运行,例如 3 轴运动台、磁环境控制系统或残余气体分析仪等。这种最先进的设施已用于开展无接触航天器电位传感、静电驱动或电子枪开发的实验,并将在未来继续用于带电天体动力学的研究。
16. 摘要 虚拟设计施工 (VDC) 和土木工程综合管理 (CIM) 是近期的创新成果,事实证明,它们可以改善项目交付并降低整个项目生命周期的成本。将 VDC/CIM 整合到组织的交付流程中将提高税收效率、节省成本、减少施工冲突、缩短施工时间并增强工人和公众安全。本研究评估了加州运输部内 VDC/CIM 的现状,并通过对现有公共信息的文献综述收集了已知的 VDC/CIM 最佳实践。此外,本研究还创建了一个战略性高级路线图,该路线图确定了差距并提供了弥合加州运输部 VDC/CIM 当前和未来状态之间差距的指导。为了在加州运输部内建立用于实施 VDC/CIM 的有机结构,建议组建组织级工作组。然后,工作组可以与负责每个活动领域的小组合作,并协助指导他们缩小本报告中确定的差距并推动数字化转型。 17. 关键词 VDC、CIM、BIM
为了评估自由号空间站 (SSF) 和未来任务的空间电源系统组件材料的耐久性,有必要在地面设施中模拟低地球轨道原子氧的加速暴露。美国国家航空航天局 (NASA) 刘易斯研究中心开发的设施提供了定向或散射氧气束、真空紫外线 (VUV) 辐射的加速暴露率,并提供原位光学特性分析。该设施利用电子回旋共振 (ECR) 等离子体源产生低能氧气束。可以在 250 至 2500 纳米的波长范围内原位测量样品的总半球光谱反射率。氘灯提供的 VUV 辐射强度水平在 115 至 200 纳米范围内,相当于三至五个太阳。减速电位分析表明,对于最适合高通量、低能量测试的操作条件,分布离子能量低于 30 电子伏特 (eV)。峰值离子能量低于设施中评估的聚合物保护涂层的溅射阈值能量 (-30 eV),因此允许长时间暴露而不会发生溅射侵蚀。中性物质的热能预计约为 0.04 eV 至 0.1 eV。基于聚酰亚胺 Kapton 质量损失的最大有效通量水平为 4.4x10 16 原子/cm z . s,因此可提供高度加速的测试能力。