美国是世界上抽水蓄能发电量第二大的国家,共有 43 座电厂,总装机容量为 21.9 吉瓦,估计储能容量为 553 吉瓦时,其中包括世界第二大电厂——位于弗吉尼亚州巴斯县的 3 吉瓦电厂。抽水蓄能发电厂大多建于 20 世纪 70 年代和 80 年代,作为核电的补充,是美国电网的“无声主力”,也是发电系统的支柱,确保了系统的可靠性,但其服务很少得到任何重大认可。但间歇性可再生能源、风能和太阳能的快速扩张,以及天气系统日益变化,极端事件频发,使人们认识到抽水蓄能的价值,并认识到未来需要更多的蓄能。
提高区域供水安全或实现流域间水平衡。用于跨流域调水的PHS厂通常具有较长的隧洞或使用上游水库作为运河,以促进流域水位转换,例如澳大利亚的雪山计划[38]和美国的大古力水坝[39,40]。
从SEPA的水环境基金会进行的280万英镑的投资和苏格兰政府的空置和废弃的土地基金将Barrhead的Levern Water从工业化期间的一条河流恢复到河流环境,现在将向该镇提供许多基于自然的服务。修复装置将辛努斯恢复到河道,去除了冗余的水坝,该水坝阻止了鱼类的迁移,并在市中心修复了大片废弃的土地。改进包括:恢复1.5公里的Levern水,升至良好的河流状态•消除了两个野生鱼类迁移的障碍,从而改善了生物多样性的弹性。修复一公顷空地和废弃的土地。为Barrhead社区创建新的公共河边“蓝绿色”空间。创建一个主动旅行路径网络,该网络将社区与Barrhead的设施联系起来。种植600棵本地树创造0.25公顷湿地栖息地播种0.75公顷的野生草地种子。增加河流以应对大雨防止局部洪水的抵御能力
摘要:迄今为止进行的抽水蓄能 (PHES) 评估主要集中在从全球或限制使用数据库中获得的大型水体,或者将方法应用于专注于水坝检测的特定领域。此外,许多评估不包括数据优化,或将其包括在流程的最后,并且受制于事先应用的限制,这些限制通常以主观标准规定。本文的目的是设计一种通用且易于应用的方法来评估可行的 PHES 潜力,该方法可提供即时可靠的结果,以协助特定地区的能源规划。它被归类为峡谷盆地,包括在使用限制之前进行优化。大加那利岛被视为应用地区,其水坝密度是世界上最高的,目前其水力发电份额为零;此外,尚未开展任何 PHES 研究。结果表明,在应用优化和所有技术约束后,大加那利岛的 PHES 潜力为 5996 MWh。如果严格应用所有环境约束,该岛将无法配对。结果表明,根据每个特定地区量身定制限制非常重要。
尽管水力发电对于电网的可靠性和弹性具有重要价值,但现有的基载、零排放水力发电的未来却面临风险。人们没有采取足够的措施来应对迫使水电运营商提前退休的挑战,危及大约 40% 的现有非联邦水电站。新开发还存在大量低效的障碍,限制了所有者和开发商选址和建设新的水力发电技术的能力。政策建议下面,国家水电协会 (NHA) 概述了即将上任的特朗普政府的一系列行动,这些行动将极大地改善新的和现有水电、抽水蓄能和海洋能技术的监管和经济格局。有关更多详细信息,下面的附录提供了具体问题的示例,确定了适当的机构,并提供了支持 NHA 政策解决方案的引文。在头100天里,总统应该发布行政命令,使水电和抽水蓄能有助于确保美国的能源主导地位,具体方式如下:1.指示美国陆军工程兵团(USACE)和美国垦务局(Reclamation)成为联邦能源管理委员会(FERC)非联邦水电许可的合作机构。这将有助于实现非动力水坝的发电潜力,这类水坝占美国水坝的97%。2.指示美国内政部(Interior)、美国商务部(Commerce)和美国农业部(Agriculture)在行使联邦能源管理委员会许可程序中的强制性条件权力时更加高效,并专注于具体水电项目的影响。3.指示美国鱼类和野生动物管理局(USFWS)、国家海洋渔业局(NMFS)、美国森林服务局(Forest Service)和环境保护署(EPA)提高其在非联邦水电许可和开发方面的协调和效率。
相当于现有技术(如风能、太阳能光伏、水力发电、潮汐能、波浪能、海洋能)产生的电力潜力。不包括潜在能源(如水坝储存的水)。这与可燃燃料(如煤、石油、天然气、生物燃料)和非可燃加热方法(如地热能、太阳能热能、核能)的一次能源获取方法形成对比,后者是根据完全燃烧期间产生的理论热量计算得出的。
神无川水力发电站概况 东京电力的神无川抽水蓄能发电站由作为上、下水库的两处人工水体(奥三川湖是在日本长野县东部南矢池村附近的信浓川支流南矢池川的上游修建南矢池水坝而形成的上水库,奥三池湖是在日本群马县西南部上野村附近的利根川支流神无川的上游修建上野水坝而形成的下水库)、连接两处水库的引水隧道以及位于群马县一侧两处水库之间地下约 500 m 处的发电站建筑物组成。图 2 是显示神无川水力发电站位置的地图。神奈川水力发电站利用上、下水库之间的有效水头(高差)653米,是一座纯抽水蓄能电站,每台发电机发电量为470兆瓦。虽然这一水头略低于东京电力鹿角川水力发电站的714米,但
boscalid(2-氯-N-(4'-氯苯基-2-基)烟酰胺),一种吡啶羧酰胺杀菌剂,是真菌线粒体中呼吸链复合物II的抑制剂。作为Boscalid仅对水生生物(LC 50> 1 - 10 mg/L)的毒性中等毒性,在NG/L-μg/L的水生生态系统中,这种化合物的当前环境水平被认为是对水生生物的安全的。In this study, we have exposed zebrafish ( Danio rerio ), Japanese medaka ( Oryzias latipes ) and Daphnia magna to a range of concentrations of boscalid (1 – 1000 μ g/ L) for 24 h, and the effects on heart rate (HR), basal locomotor activity (BLA), visual motor response (VMR), startle response (SR), and habituation (HB) to已经评估了一系列振动或光刺激。此外,已经确定了主要神经递质的轮廓的变化。Boscalid以浓度依赖性的方式改变了HR,分别导致FISH和D. magna的阳性或阴性的表现效应。虽然Boscalid降低了BLA并增加了水坝中的VMR,但这些行为并未改变鱼类。对于SR和HB,该反应更为特异性和浓度特异性,而水坝的敏感性最高。 在神经传递水平上,Boscalid的暴露降低了鱼幼虫中L-天冬氨酸的水平,并增加了d中多巴胺能代谢产物的水平。 麦格纳。 因此,提出的结果强调需要审查该杀菌剂的当前调节。对于SR和HB,该反应更为特异性和浓度特异性,而水坝的敏感性最高。在神经传递水平上,Boscalid的暴露降低了鱼幼虫中L-天冬氨酸的水平,并增加了d中多巴胺能代谢产物的水平。麦格纳。因此,提出的结果强调需要审查该杀菌剂的当前调节。我们的研究表明,暴露于环境水平的boscalid会改变心脏活性,损害生态相关的行为,并导致在系统发育上不同的脊椎动物和无脊椎动物模型中不同神经递质系统的变化。