1. RCSI 医学与健康科学大学生理学与医学物理系,爱尔兰都柏林 D02 YN77。 2. 马德里康普顿斯大学光学与验光学院验光系,Avda。 Arcos de Jalon 118, 28040 马德里, 西班牙。 3.爱尔兰都柏林三一学院三一生物医学科学研究所生物化学和免疫学学院。 4. CIC biomaGUNE,巴斯克研究和技术联盟 (BRTA),P° Miramon 182, 20014 圣塞巴斯蒂安,吉普斯夸,西班牙。 5. 伊克尔巴斯克巴斯克科学基金会,西班牙毕尔巴鄂。 6. 马德里欧洲大学生物医学科学与健康学院医学系,C. Tajo,s/n,28670 Villaviciosa de Odón,马德里,西班牙。 7. 苏州大学药学院,江苏苏州 215123。8. 慕尼黑路德维希马克西米利安大学医院卒中与痴呆研究所 (ISD),慕尼黑 81377,德国。9. 慕尼黑系统神经病学集群 (SyNergy),慕尼黑 81377,德国。10. 诺曼底大学,UNICAEN,INSERM UMR-S U1237,神经系统疾病病理生理学和成像 (PhIND),GIP Cyceron,卡昂-诺曼底血液和脑研究所 (BB@C),法国。11. KHAN 技术转移基金 I GmbH & Co. KG,Otto-Hahn-Straße 15,多特蒙德 44227,德国。 12. Lead Discovery Center GmbH,Otto-Hahn-Straße 15, 44227 Dortmund,德国。13. Affectis Pharmaceuticals AG,Otto-Hahn-Straße 15, 44227 Dortmund,德国。14. Janssen Research and Development LLC,美国加利福尼亚州圣地亚哥。15. Janssen Pharmaceutica NV,比利时贝尔瑟。16. The Marc Ceusters Company, BV,比利时迪斯特。17. FutureNeuro Research Ireland 转化脑科学中心,RCSI 医学与健康科学大学,都柏林 D02 YN77,爱尔兰。
1 癌症分子机制项目,癌症研究中心 (CIC),CSIC-萨拉曼卡大学,萨拉曼卡,西班牙 2 生物医学研究所 (IRB 巴塞罗那),巴塞罗那科学技术研究所 (BIST),西班牙巴塞罗那 3 癌症转化和临床研究项目,CSIC-大学癌症研究中心 (CIC)萨拉曼卡,萨拉曼卡,西班牙 4 纳瓦拉大学,应用医学研究中心,实体瘤项目,潘普洛纳,西班牙 5 肿瘤与发育生物学实验室 (LBTD),GIGA-Cancer,列日大学,列日,比利时 6 动物实验服务,萨拉曼卡大学,萨拉曼卡,西班牙 7 分子生物技术和健康科学系,大学分子生物技术中心都灵,都灵,意大利 8 采购计划,加泰罗尼亚肿瘤研究所 (ICO),L'Hospitalet de Llobregat,巴塞罗那,西班牙 9 Departament de Química Inorgànica i Orgànica,Universitat de Barcelona,巴塞罗那,西班牙 # 共同第一作者 * 共同通讯作者:d.santamaria@usal.es & cristina.mayor-ruiz@irbbarcelona.org
随着能源市场日益转向可再生能源,确保数据流安全比以往任何时候都更加重要。极端天气挑战和不断升级的网络威胁使得数据的可靠性和安全性至关重要。从整合可再生能源到管理分布式能源和监控系统,这种必要性在价值链的每个方面都很明显。重点延伸到确保长期运行、强大的网络设计和快速连接——所有这些都是大型 BESS 无缝运行所必需的。凭借 35 年通过连接实现工业转型的行业专业知识,我们致力于提供可靠的工业级解决方案,加强电池储能容器和并网电池储能系统的能源运营支柱。
摘要:近年来,光子计算的显着进步突显了需要光子记忆,尤其是高速和连贯的随机记忆。应对实施光子记忆的持续挑战才能充分利用光子计算的潜力。基于刺激的布里鲁因散射的光子传声记忆是一种可能的解决方案,因为它一致地将光学信息传递到高速下的声波中。这样的光声内存具有巨大的潜力,因为它满足了高性能光随机记忆的关键要求,因为它的相干性,芯片兼容性,频率选择性和高带宽。但是,由于声波的纳秒衰减,到目前为止,迄今为止的存储时间仅限于几纳秒。在这项工作中,我们通过实验增强光声内存的固有存储时间超过1个数量级,并在存储时间为123 ns后连贯地检索光学信息。这是通过在4.2 K处高度非线性纤维中使用光声记忆来实现的,从而使内在的声子寿命增加了6倍。我们通过使用直接和双同性恋检测方案测量初始和读数光学数据脉冲来证明我们的方案能力。最后,我们分析了4.2 - 20 K范围内不同低温温度下光声记忆的动力学,并将发现与连续波测量值进行了比较。关键字:布里渊散射,光子神经形态计算,光学记忆,非线性光学,低温■简介延长的存储时间不仅对光子计算,而且对需要长声子寿命的Brillouin应用程序,例如光声过滤器,真实时延迟网络和微波光子学中的合成器。
检测从Terahertz到可见光谱结构域的光脉冲的电场波形提供了平均场波形的完整特征,并具有量子光学的巨大潜力,时间域(包括频率bomb)光谱镜,高谐波,高谐波,高旋转性生成和Attosecond Science,可举几例。可以使用电磁抽样进行场分辨的测量,其中激光脉冲通过与另一个较短持续时间的另一个脉冲的相互作用来表征。测得的脉冲序列必须由相同的脉冲组成,包括其相等的载体 - eNvelope相(CEP)。由于宽带激光增益介质的覆盖率有限,在中红外创建CEP稳定的脉冲序列通常需要非线性频率转换,例如差异频率产生,光学参数放大或光学整流。这些技术以单次通道的几何形状运行,通常会限制效率。在这项工作中,我们展示了对谐振系统(光学参数振荡器(OPO))中产生的脉冲的现场分解分析。由于固有的反馈,该设备在给定的输入功率水平上表现出相对较高的转换效率。通过电磁抽样,我们证明了用CEP稳定的几个周期纤维激光脉冲泵送的亚谐波OPO会产生CEP稳定的中红外输出。完整的振幅和相信息使色散控制直接控制。我们还直接在时间域中直接确认了Opo的外来“翻转”状态,在时域中,连续脉冲的电场具有相反的符号。
体内基因组校正有望产生持久的疾病治疗方法;然而,有效的干细胞编辑仍然具有挑战性。在这项研究中,我们证明优化的肺靶向脂质纳米颗粒 (LNP) 能够在干细胞中进行高水平的基因组编辑,从而产生持久的反应。在可激活的 tdTomato 小鼠中静脉注射基因编辑 LNP 可实现 >70% 的肺干细胞编辑,并在 >80% 的肺上皮细胞中维持 tdTomato 表达 660 天。解决囊性纤维化 (CF),NG-ABE8e 信使 RNA (mRNA) – sgR553X LNPs 介导 >95% 的囊性纤维化跨膜传导调节器 (CFTR) DNA 校正,恢复原发性患者支气管上皮细胞中的 CFTR 功能,相当于 Trikafta 治疗 F508del,校正肠道类器官并校正 CF 小鼠 50% 肺干细胞中的 R553X 无义突变。这些发现引入了 LNP 支持的组织干细胞编辑,用于疾病修饰基因组校正。G
战略报告 概述 01 财务和运营亮点 02 集团主席声明 04 集团首席执行官回顾 战略和运营环境 08 战略框架 09 我们的业务 10 商业模式 12 投资案例 14 市场主题 16 交易环境 绩效 18 分部报告 20 行业回顾 28 集团首席财务官回顾 32 关键绩效指标 可持续性 34 ESG 概述 36 环境 48 社会 54 治理 风险 56 风险管理 62 生存力声明 第 172 条声明 65 第 172 条声明和利益相关方参与 67 第 S172 条相关披露 68 非财务和可持续性信息声明 公司治理 72 集团主席治理介绍 74 治理框架和董事会一览 76 我们的宗旨、价值观和战略的重要性 78 董事会简介 81 治理结构 82 职责分工 83 组成、继任和评估 85 董事会决策87 董事会活动 88 美国子公司的管理和控制 89 员工敬业度 92 提名委员会报告 97 董事效力 100 审计委员会报告 106 风险与安全委员会报告 110 董事薪酬报告 112 薪酬概览 117 年度薪酬报告 130 董事报告和法定信息 134 独立审计师报告 财务报表 142 合并损益表 143 合并综合损益表 143 合并权益变动表 144 合并资产负债表 145 合并现金流量表 145 净债务变动对账表 146 财务报表附注 193 公司资产负债表 194 公司权益变动表 195 公司财务报表附注 其他信息 197 五年财务摘要 198 其他财务信息 199 词汇表 200 其他绩效衡量标准 201 股东信息203 公司信息和顾问
本演示文稿包含《1995 年私人证券诉讼改革法案》所定义的“前瞻性陈述”,涉及重大风险和不确定性,包括关于 VERVE-201 临床试验启动时间、公司研发计划以及公司计划(包括 VERVE-201)的潜在优势和治疗潜力的陈述。本演示文稿中包含的所有陈述(历史事实陈述除外),包括关于公司战略、未来运营、未来财务状况、前景、计划和管理目标的陈述,均为前瞻性陈述。“预期”、“相信”、“继续”、“可能”、“估计”、“预期”、“打算”、“可能”、“计划”、“潜在”、“预测”、“项目”、“应该”、“目标”、“将”、“会”和类似表达旨在识别前瞻性陈述,但并非所有前瞻性陈述都包含这些识别词。任何前瞻性陈述均基于管理层当前对未来事件的预期,并受多种风险和不确定因素的影响,这些风险和不确定因素可能导致实际结果与此类前瞻性陈述中所述或暗示的结果存在重大不利差异。这些风险和不确定性包括但不限于与公司有限的经营历史相关的风险;公司及时提交并获得其产品候选物的监管申请批准的能力;推进其产品候选物的临床试验;按预期时间表或完全启动、招募和完成其正在进行和未来的临床试验;正确估计公司产品候选物的潜在患者群体和/或市场;在临床试验中复制在 VERVE-101、VERVE-102 和 VERVE-201 的临床前研究和/或早期临床试验中发现的积极结果;在当前和未来临床试验中按照预期的时间表推进其产品候选物的开发;获得、维护或保护与其产品候选物相关的知识产权;管理费用;并筹集实现其业务目标所需的大量额外资本。有关其他风险和不确定性以及其他重要因素的讨论(其中任何因素都可能导致公司的实际结果与前瞻性陈述中的结果不同),请参阅“风险因素”部分,以及公司最近向美国证券交易委员会提交的文件和公司未来向美国证券交易委员会提交的其他文件中有关潜在风险、不确定性和其他重要因素的讨论。此外,本演示文稿中包含的前瞻性陈述代表公司截至本新闻稿日期的观点,不应被视为代表公司截至本新闻稿日期之后任何日期的观点。公司预计后续事件和发展将导致公司的观点发生变化。然而,虽然公司可能会选择在未来某个时间点更新这些前瞻性陈述,但公司明确表示不承担任何更新义务。
摘要:对英国遍布医院的爆发的肺炎(K.肺炎)培养,持续了12个月以上。我们试图对爆发菌株进行序列和遗传表征。抗生素敏感性测试(AST)是在从暴发中保存的65 k肺炎分离株上进行的。使用牛津纳米孔技术(ONT)奴才流循环对所有分离株进行了测序:10个分离株,包括2017年最早收集日期的分离株,在Novaseq 6000平台上还测序,以构建高准确性纳米孔 - 小颗粒组件。在测序菌株中,60个键入ST628。96.6%(n = 58/60)ST628菌株具有大约247-kb fib(k)质粒,含有多达11种抗微生物抗性基因,包括扩展的谱β-内酰胺氨基氨基氨基氨基氨基酶(ESBL)基因,BLA CTX-M-15。使用单核苷酸多态性(SNP)键入爆发分离株之间的克隆性。暴发菌株在爆发前6年的2012年与临床ST628菌株有关。在持久的医学医学医学爆发期间,在多个独立的病房中检测到了具有多药抗药性(MDR)质粒的稀有ESBL K.肺炎K2 ST628菌株。建议对这种菌株进行监视,以防止未来的医院暴发。
归属感和塑造共同世界的力量公民机构;公民协会;集体效能;平等获取信息;免受污名、歧视和压迫;公民参与的机会多(投票、志愿服务、公共工作);社会支持;支持公民权利和人权;活跃的艺术、文化和精神生活