1 Acemoglu等。 (2012)认为,通过组合两个输入:肮脏的输入和清洁输入来产生独特的最终好处。 仅考虑仅考虑碳排放而不是其他环境倾向,它不会通过肮脏的能量和清洁能量来代替分析结果。1 Acemoglu等。(2012)认为,通过组合两个输入:肮脏的输入和清洁输入来产生独特的最终好处。仅考虑仅考虑碳排放而不是其他环境倾向,它不会通过肮脏的能量和清洁能量来代替分析结果。
我们是三位教育工作者,他们在该领域拥有近100年的经验。在这里,我们正在撰写本文,以分享我们在设计和实施一个课程中教授单词学习策略(使用单词部分,上下文和词典解锁未知单词含义的程序)的经验)。该计划的标题为单词学习策略,最初是由3年教育科学研究所小型企业创新研究(IES SBIR)Grant(销售,2008- 2011年)资助的,目前,其影响力的研究由4年IES IES效力资助(Schneider,2015-2019)资助。第一作者是一所大型州立大学的名誉扫盲教育教授,已经与该计划合作了7年。第二和第三作者,大型非营利研究与开发组织的研究人员在过去4年中一直与该计划合作。一起,我们已经观察并参与了该计划的初步发展,以及其有效性的早期和大规模试验。在此过程中,我们与教学设计师,基于大学的课程专家,教育研究人员,在职教育方面的专家以及来自20多个地区的数百名教师合作并了解了。虽然我们的项目专门涉及文字学习策略的指导,但我们认为,我们在这里讨论的许多内容与策略指导更相关,例如,在开始阅读教学,在理解教学中进行推断以及在公民和历史课中使用结构化的学术争议。我们也相信大部分
摘要利什曼原虫寄生虫是利什曼病的因果因素,这是全球90多个国家的地方性疾病。多年来,在开发针对利什曼病的治疗方法时,传统方法集中在寄生虫上。尽管尝试了许多尝试,但尚无普遍治疗,并且可以出现阻力。在这里,我们提出并遵循一种旨在克服当前缺乏治疗的宿主定向方法。我们的方法确定了宿主细胞中潜在的治疗靶标,并提出了旨在改善免疫反应的已知药物相互作用,并阻止寄生虫生存所需的宿主机制。我们开始分析感染了利什曼原虫大调的巨噬细胞的转录因子调节网络。接下来,基于感染的调节动力学和可用的基因表达方面的纤维,我们选择了潜在的治疗靶蛋白。然后根据多层网络方案对这些蛋白质的功能进行了分析,在该方案中,我们将有关代谢途径的信息与已知药物结合在一起,这些药物与这些蛋白质进行的活性有直接联系。使用我们的方法,我们能够识别五个宿主蛋白质编码基因产物,它们是治疗利什曼病的潜在治疗靶标。此外,从已知与这些蛋白质执行功能相互作用的11种药物中,已经针对该寄生虫进行了3种测试,并以这种方式验证了我们的新方法。更重要的是,先前用来治疗其他疾病的剩余八种药物仍然是有希望的尚未受人欢迎的抗精神病药疗法。
拓扑优化通过在给定域中最佳分发材料来优化,需要2个无梯度优化器来解决高度复杂的问题。然而,在涉及数百个设计变量或更多涉及的情况下,解决此类问题将需要数百万个有限的4个元素方法(FEM)计算,其计算成本又大且不切实际。在这里5我们报告了一个自我指导的在线学习优化(SOLO),该优化(SOLO)将深度神经6网络(DNN)与FEM计算集成在一起。DNN将目标学习并替换为设计变量的7个函数。少数培训数据是基于DNN的全局最佳预测而动态生成的8。DNN适应了新的培训数据9,并在关注区域提供了更好的预测,直到收敛为止。我们的算法通过合规性最小化问题和流体结构优化问题测试了10个。IT 11
1. 教师可以使用幻灯片和脚本来解释完成“发明意图”陈述的目的和过程,或引导学生自己进行指导和讨论。教师将根据需要与全班分享幻灯片:发明意图。教师将向学生解释如何计划执行他们的发明项目,将他们的想法变成模型/原型。注意:幻灯片包括提供建设性反馈的有效模型,以帮助学生在同伴分享会期间提供有用的积极评论。教师可以现在讨论这些内容,也可以在课程的稍后领导伙伴分享活动时讨论这些内容。 2. 教师可以选择将“发明意图”工作表的副本分发给学生练习。教师将通过一个示例引导学生完成它。该工作表将帮助学生组织他们的想法和完成发明项目的计划。教师可以使用铅笔作为发明想法的示例(如幻灯片中所示)。在幻灯片中的每个提示之后,询问学生他们如何在课堂讨论中回答提示。教师可以选择进行学生证明行为活动作为一种练习,以帮助学生更好地理解如何填写发明意图表格作为他们的模型或作为第二次练习机会。学生证明行为:课堂学习活动建议:1. 大纸练习 - 让学生练习做出发明意图陈述。为全班分配另一个简单而熟悉的物体,例如纸吸管、文件夹或冰淇淋蛋筒,作为示例。将小组分成 4 组。要求每个小组专注于发明意图工作表上的一个提示:a. 我打算发明 b. 它将解决的问题是 c. 我已尽我所能通过采取以下步骤确保我的发明是原创的 d. 我将在我的发明中使用以下材料让学生有时间进行小组讨论,并将他们的回答写在大便签上。完成后,按顺序将答案贴在墙上供学生查看。然后,主持分享会,让每个小组都有机会解释他们的回答,班上其他同学可以添加更多内容或提供反馈。虚拟教学的想法:
可以帮助理解存储在数据库中的原始信息,从而有助于人类认知[6]。仪表板可以看作是指标的容器[13],但 Bronus 等人对仪表板的定义最准确。Bronus 等人将仪表板定义为“易于阅读、通常单页的实时用户界面,以图形方式显示组织关键绩效指标(KPI)的当前状态(快照)和历史趋势,以便一目了然地做出即时和明智的决策”[5]。这种类型的视觉显示在理解方面至关重要,因为如果以有意义的方式呈现,人类能够处理大量数据[17]。学习分析工具和可视化的使用有可能为教师提供有效的支持,帮助他们保持学生的参与度并实现学习目标[15]。Yoo 等人[21]对教育仪表板进行了审查,他们强调了仪表板的实用性,提到仪表板呈现了教育数据挖掘过程的结果,并帮助教师监控和了解学生的学习模式。我们可以将同样的原则应用于数据
摘要:FUT8 是一种必需的 α -1,6-岩藻糖基转移酶,可使 N-糖链最内层的 GlcNAc 发生岩藻糖基化,这一过程称为核心岩藻糖基化。在体外,FUT8 表现出对双触角复合 N-糖寡糖 (G0) 的底物偏好,但 N-糖链所附着的底层蛋白质/肽的作用仍不清楚。在这里,我们用一系列 N-糖寡糖、N-糖肽和 Asn 连接的寡糖探索了 FUT8 酶。我们发现底层肽在少甘露糖(低甘露糖)和高甘露糖 N-糖链的岩藻糖基化中发挥作用,但对复合型 N-糖链不起作用。使用饱和转移差异 (STD) NMR 光谱,我们证明 FUT8 可识别 G0 N-糖链的所有糖单元和大多数氨基酸残基 (Asn-X-Thr),这些残基可作为寡糖基转移酶 (OST) 的识别序列。在存在 GDP 的情况下观察到最大的 STD 信号,这表明 FUT8 必须先与 GDP-β-L-岩藻糖 (GDP-Fuc) 结合才能最佳地识别 N-糖链。我们利用 CHO 细胞的糖基化能力基因工程来评估 FUT8 在具有一组特征明确的治疗性 N-糖蛋白的细胞中对高甘露糖和复合型 N-糖链的核心岩藻糖基化。这证实了核心岩藻糖基化主要发生在复合型 N-糖链上,尽管显然只发生在选定的糖基位点上。消除细胞中复合型糖基化能力(KO mgat1)表明,当转化为高甘露糖时,具有复合型 N-糖的糖基位点会失去核心岩藻糖基化。然而有趣的是,对于在有效获取四天线 N-糖方面并不常见的促红细胞生成素,在高甘露糖 N-糖上,三个 N-糖基化位点中有两个获得了岩藻糖基化。对几种蛋白质晶体结构的 N-糖基化位点的检查表明,核心岩藻糖基化主要受 N-糖的可及性和性质的影响,而不是受底层肽序列的性质的影响。这些数据进一步阐明了细胞体外和体内不同的 FUT8 受体底物特异性,揭示了促进核心岩藻糖基化的不同机制。关键词:FUT8、核心岩藻糖基化、N-糖基化、STD NMR、酶动力学、高甘露糖N-聚糖、复合N-聚糖、寡甘露糖型N-聚糖■ 引言
334 RAMESH P KTU-F11822 工程学院 蒙纳尔 电子与通信工程 电子系统设计、微型燃料电池、超大规模集成电路 335 CIZA THOMAS KTU-F15261 工程学院 特里凡得琅 电子与通信工程 网络安全、模式识别、机器学习 336 RANJITH RAM A KTU-F10384 政府工程学院 坎努尔 电子与通信工程 信号/图像处理、计算机视觉、模式识别
参考:1。cho sf,Lin L,Xing L等。靶向BCMA靶向疗法:在多发性骨髓瘤中推动免疫疗法的新时代。癌症。2020; 12:1473。 doi:10.3390/cancers12061473 2。Cho SF,Anderson KC,Tai Yt。 靶向多发性骨髓瘤的B细胞成熟抗原(BCMA):基于BCMA的免疫疗法的潜在用途。 前疫苗。 2018; 9:1821。 doi:10.3389/fimmu.2018.01821 3。 Nadeem O,Tai YT,Anderson KC。 多发性骨髓瘤的免疫治疗和靶向方法。 免疫目标。 2020; 9:201-215。 doi:10.2147/itt.S240886 4。 Shah N,Chari A,Scott E,Mezzi K,Usmani SZ。 多发性骨髓瘤中的 B细胞成熟抗原(BCMA):靶向和当前治疗方法的基本原理。 白血病。 2020; 34:985-1005。 doi.org/10.1038/s41375-020-0734-z 5。 Chim CS,Kumar SK,Orlowski RZ等。 对复发和难治性多发性骨髓瘤的治疗:新颖的药物,抗体,免疫疗法以及其他。 白血病。 2018; 32:252-262。 doi:10.1038/leu.2017.329 6。 tai yt,安德森KC。 将B细胞成熟抗原靶向多发性骨髓瘤。 免疫疗法。 2015; 7(11):1187-1199。 doi:10.2217/imt.15.77 7。 Caraccio C,Krishna S,Phillips DJ,SchürchCM。 多发性骨髓瘤的双特异性抗体:靶标,药物,临床试验和未来方向的综述。 前疫苗。 2020; 11:501。 doi:10.3389/ fimmu.2020.00501 8。 div> tai yt,Acharya C,An G等。 血。 clinicaltrials.gov。Cho SF,Anderson KC,Tai Yt。靶向多发性骨髓瘤的B细胞成熟抗原(BCMA):基于BCMA的免疫疗法的潜在用途。前疫苗。2018; 9:1821。 doi:10.3389/fimmu.2018.01821 3。 Nadeem O,Tai YT,Anderson KC。 多发性骨髓瘤的免疫治疗和靶向方法。 免疫目标。 2020; 9:201-215。 doi:10.2147/itt.S240886 4。 Shah N,Chari A,Scott E,Mezzi K,Usmani SZ。 多发性骨髓瘤中的 B细胞成熟抗原(BCMA):靶向和当前治疗方法的基本原理。 白血病。 2020; 34:985-1005。 doi.org/10.1038/s41375-020-0734-z 5。 Chim CS,Kumar SK,Orlowski RZ等。 对复发和难治性多发性骨髓瘤的治疗:新颖的药物,抗体,免疫疗法以及其他。 白血病。 2018; 32:252-262。 doi:10.1038/leu.2017.329 6。 tai yt,安德森KC。 将B细胞成熟抗原靶向多发性骨髓瘤。 免疫疗法。 2015; 7(11):1187-1199。 doi:10.2217/imt.15.77 7。 Caraccio C,Krishna S,Phillips DJ,SchürchCM。 多发性骨髓瘤的双特异性抗体:靶标,药物,临床试验和未来方向的综述。 前疫苗。 2020; 11:501。 doi:10.3389/ fimmu.2020.00501 8。 div> tai yt,Acharya C,An G等。 血。 clinicaltrials.gov。2018; 9:1821。 doi:10.3389/fimmu.2018.01821 3。Nadeem O,Tai YT,Anderson KC。 多发性骨髓瘤的免疫治疗和靶向方法。 免疫目标。 2020; 9:201-215。 doi:10.2147/itt.S240886 4。 Shah N,Chari A,Scott E,Mezzi K,Usmani SZ。 多发性骨髓瘤中的 B细胞成熟抗原(BCMA):靶向和当前治疗方法的基本原理。 白血病。 2020; 34:985-1005。 doi.org/10.1038/s41375-020-0734-z 5。 Chim CS,Kumar SK,Orlowski RZ等。 对复发和难治性多发性骨髓瘤的治疗:新颖的药物,抗体,免疫疗法以及其他。 白血病。 2018; 32:252-262。 doi:10.1038/leu.2017.329 6。 tai yt,安德森KC。 将B细胞成熟抗原靶向多发性骨髓瘤。 免疫疗法。 2015; 7(11):1187-1199。 doi:10.2217/imt.15.77 7。 Caraccio C,Krishna S,Phillips DJ,SchürchCM。 多发性骨髓瘤的双特异性抗体:靶标,药物,临床试验和未来方向的综述。 前疫苗。 2020; 11:501。 doi:10.3389/ fimmu.2020.00501 8。 div> tai yt,Acharya C,An G等。 血。 clinicaltrials.gov。Nadeem O,Tai YT,Anderson KC。多发性骨髓瘤的免疫治疗和靶向方法。免疫目标。2020; 9:201-215。 doi:10.2147/itt.S240886 4。Shah N,Chari A,Scott E,Mezzi K,Usmani SZ。B细胞成熟抗原(BCMA):靶向和当前治疗方法的基本原理。白血病。2020; 34:985-1005。 doi.org/10.1038/s41375-020-0734-z 5。Chim CS,Kumar SK,Orlowski RZ等。对复发和难治性多发性骨髓瘤的治疗:新颖的药物,抗体,免疫疗法以及其他。白血病。2018; 32:252-262。 doi:10.1038/leu.2017.329 6。 tai yt,安德森KC。 将B细胞成熟抗原靶向多发性骨髓瘤。 免疫疗法。 2015; 7(11):1187-1199。 doi:10.2217/imt.15.77 7。 Caraccio C,Krishna S,Phillips DJ,SchürchCM。 多发性骨髓瘤的双特异性抗体:靶标,药物,临床试验和未来方向的综述。 前疫苗。 2020; 11:501。 doi:10.3389/ fimmu.2020.00501 8。 div> tai yt,Acharya C,An G等。 血。 clinicaltrials.gov。2018; 32:252-262。 doi:10.1038/leu.2017.329 6。tai yt,安德森KC。将B细胞成熟抗原靶向多发性骨髓瘤。免疫疗法。2015; 7(11):1187-1199。 doi:10.2217/imt.15.77 7。 Caraccio C,Krishna S,Phillips DJ,SchürchCM。 多发性骨髓瘤的双特异性抗体:靶标,药物,临床试验和未来方向的综述。 前疫苗。 2020; 11:501。 doi:10.3389/ fimmu.2020.00501 8。 div> tai yt,Acharya C,An G等。 血。 clinicaltrials.gov。2015; 7(11):1187-1199。 doi:10.2217/imt.15.77 7。Caraccio C,Krishna S,Phillips DJ,SchürchCM。多发性骨髓瘤的双特异性抗体:靶标,药物,临床试验和未来方向的综述。 前疫苗。 2020; 11:501。 doi:10.3389/ fimmu.2020.00501 8。 div> tai yt,Acharya C,An G等。 血。 clinicaltrials.gov。:靶标,药物,临床试验和未来方向的综述。前疫苗。2020; 11:501。 doi:10.3389/ fimmu.2020.00501 8。 div>tai yt,Acharya C,An G等。血。clinicaltrials.gov。4月和BCMA在骨髓微环境中促进人类多发性骨髓瘤生长和免疫抑制。2016; 127:3225-3236。 doi:10.1182/Blood-2016-01-691162 9。 PF-06863135作为单一药物,并与免疫调节剂结合复发/难治性多发性骨髓瘤。 出版于2017年8月31日。 更新了2021年6月2日。 2021年6月25日访问。 clinicaltrials.gov/ct2/show/ nct03269136 10。 对多发性骨髓瘤的日本参与者的PF 06863135研究。 clinicaltrials.gov。 出版于2021年3月15日。 更新了2021年6月2日。 2021年6月25日访问。 clinicaltrials.gov/ct2/show/nct04798586 11。 Huehls AM,Coupet TA,Sentman CL。 双特异性T细胞诱因用于癌症免疫疗法。 免疫细胞生物。 2015; 93:290-296。 doi:10.1038/ ICB.2014.93 div>2016; 127:3225-3236。 doi:10.1182/Blood-2016-01-691162 9。PF-06863135作为单一药物,并与免疫调节剂结合复发/难治性多发性骨髓瘤。出版于2017年8月31日。更新了2021年6月2日。2021年6月25日访问。clinicaltrials.gov/ct2/show/ nct03269136 10。对多发性骨髓瘤的日本参与者的PF 06863135研究。clinicaltrials.gov。出版于2021年3月15日。更新了2021年6月2日。2021年6月25日访问。clinicaltrials.gov/ct2/show/nct04798586 11。Huehls AM,Coupet TA,Sentman CL。双特异性T细胞诱因用于癌症免疫疗法。免疫细胞生物。2015; 93:290-296。 doi:10.1038/ ICB.2014.93 div>2015; 93:290-296。 doi:10.1038/ ICB.2014.93 div>
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2021年7月12日发布。 https://doi.org/10.1101/2021.07.12.451994 doi:biorxiv Preprint
