©2017 Thermo Fisher Scientific Inc.保留所有权利。mp35n是SPS Technologies,Inc。拥有的商标。所有其他商标都是Thermo Fisher Scientific及其子公司的财产。此信息作为Thermo Fisher Scientific产品能力的一个例子,不打算以任何可能侵犯他人知识产权的方式来鼓励使用这些产品。规格,条款和定价可能会发生变化。并非所有产品都在所有国家 /地区提供。请咨询您的当地销售代表以获取详细信息。BR72316-EN 0917M
对于感觉运动功能障碍患者来说,恢复手指和指尖的皮肤感觉对于实现灵巧的假肢控制至关重要。然而,通过人类皮层内微刺激 (ICMS) 实现局部和可重现的指尖感觉尚未见报道。本文表明,人类参与者的 ICMS 能够引发双手 7 个手指的感知,包括 6 个指尖区域(即每只手 3 个)。中位感知大小估计包括 1.40 个手指或手掌节段(例如,一个节段是指尖或手指下方的上手掌部分)。这通过更敏感的手动标记技术得到证实,其中中位感知大小对应于指尖节段的大约 120%。感知表现出高度的日内一致性,包括在盲手指辨别任务中的高性能 (99%)。几天内,感知的变化更大,75.8% 的试验包含受刺激电极的模态手指或手掌区域。这些结果表明,ICMS 可以在神经假体操纵物体期间传递局部指尖感觉。
尽管与其他类型的心理意象相比,触觉意象的研究并不深入,但它对于脑机接口 (BCI) 来说可能非常有用,因为它可以产生 BCI 操作所需的神经调节。在这里,我们通过比较触觉意象 (TI) 对皮质反应的影响与指尖实际振动触觉刺激的影响,评估了与触觉意象 (TI) 相关的神经调节。我们发现 TI 和振动刺激都会引起与事件相关的脑电图 (EEG) 活动频率变化。此外,TI 会影响由短脉冲振动引起的体感诱发电位 (SEP)。收集了 29 名接受过触觉意象任务训练的参与者的 EEG 数据。在有和没有 TI 的情况下测量了对振动脉冲的反应。这些 SEP 由三个主要部分组成:中央顶叶区域的 P100 反应、额叶区域的 P200 反应和中央区域的 P300 反应。 TI 持续导致同侧 P100、同侧和对侧 P300 以及额叶 P200 增加。此外,TI 还增强了额叶区域因振动而发生的 θ 波段 ERS。这些发现表明,TI 不仅会调节 EEG 模式,还会影响皮质对物理体感刺激的处理。这种对真实和想象的躯体感觉的联合处理可用于 BCI,特别是在临床相关的 BCI 中,这些 BCI 致力于通过结合中枢诱导和外周活动来恢复体感处理。
nvidia nemo,nvidia急流图书馆,nvidia蓝图和nvidia nim微服务; AI在每个行业的每个应用程序中都是主流;凭借项目数字,Grace Blackwell SuperChip将进入数百万开发人员。并将AI超级计算机放在每个数据科学家,AI研究人员和学生赋予他们参与和塑造AI年龄的桌子上的书桌上,这是前瞻性的陈述,这些陈述受风险和不确定性的影响,可能导致结果与期望有实质性不同。可能导致实际结果差异的重要因素包括:全球经济状况;我们依靠第三方制造,组装,包装和测试我们的产品;技术发展和竞争的影响;开发新产品和技术或对我们现有产品和技术的增强;市场接受我们的产品或合作伙伴的产品;设计,制造或软件缺陷;消费者偏好或需求的变化;行业标准和界面的变化;集成到系统中时,我们的产品或技术的性能意外丧失;以及其他因素不时详细介绍了与美国证券交易委员会(SEC)或SEC的NVIDIA文件中详细介绍的,包括但不限于其表格10-K和表格10-Q的季度报告的年度报告。向SEC提交的报告的副本已发布在公司网站上,可在NVIDIA上免费获得。这些前瞻性陈述不能保证未来的表现,并且仅在此日期开始说话,除了法律要求外,Nvidia违反了更新这些前瞻性陈述以反映未来事件或情况的任何义务。
图表对于传达各个领域的信息至关重要,但对于没有辅助技术的盲目和低视力(BLV)人来说是无法访问的。图表理解工具利用触觉反馈已被广泛使用,但通常是笨重,昂贵且静态的,使它们无法传达图表数据。为了增加设备的可移植性,启用多任务处理并为图表理解提供了效率的帮助,我们引入了一个新型系统,该系统将不引人注目的调制电动action反馈直接传达给指尖边缘。我们与十二名参与者的三部分研究证实了该系统的有效性,证明当用0.12秒的间隔应用0.5秒时,Electrotactile反馈提供了最准确的位置和方向识别。此外,我们的电动设备已被证明在协助BLV参与者理解四个常用图表方面非常有价值:线图,散点图,条形图,
当血糖水平超过阈值时,糖尿病就会发生。 现有的血糖测试方法是基于插入人体中的针头的针头的侵入性方法,以从体内取血样,然后将其转移到一次性测试条上进行化学加工,以确定其中存在的葡萄糖量。 但是,为了减轻患者疼痛和使用测试条,这些技术导致了非侵入性方法的发展。 非侵入性方法使用近红外传感器在不使用针或测试条的情况下在指尖测量葡萄糖水平。 通过指尖的一侧传输了近红外(NIR)光学信号,然后在指尖的另一侧接收,这通过分析接收信号的强度变化来预测分子血糖计数。 在这项工作中,我们使用微控制器和其他电子零件开发了这样的系统。 在此之前,我们在Proteus环境中开发了一个模拟模型。 关键字:糖尿病,NIR方法,侵入性和非侵入性葡萄糖仪,微控制器。糖尿病就会发生。现有的血糖测试方法是基于插入人体中的针头的针头的侵入性方法,以从体内取血样,然后将其转移到一次性测试条上进行化学加工,以确定其中存在的葡萄糖量。但是,为了减轻患者疼痛和使用测试条,这些技术导致了非侵入性方法的发展。非侵入性方法使用近红外传感器在不使用针或测试条的情况下在指尖测量葡萄糖水平。通过指尖的一侧传输了近红外(NIR)光学信号,然后在指尖的另一侧接收,这通过分析接收信号的强度变化来预测分子血糖计数。在这项工作中,我们使用微控制器和其他电子零件开发了这样的系统。在此之前,我们在Proteus环境中开发了一个模拟模型。关键字:糖尿病,NIR方法,侵入性和非侵入性葡萄糖仪,微控制器。
这种重新思考最终催生出了一种创新设备,该设备具有双频率超声换能器双阵列——一种微型超声仪器,当手指插入时,一只手完全自由,另一只手的手指和拇指也完全自由。高频线性阵列(位于指尖下方)可以检测气胸(占常规战争伤害的 15%)、肌肉骨骼问题和外周血管;低频相控阵(位于指尖)可进行深层身体扫描,以检测内出血、异物并评估深层器官。
瘫痪和神经病,影响了全球数百万的人,可能会伴随着体质的重大丧失。触觉感觉是实现灵敏运动的核心,脑部计算机界面(BCI)研究人员探索了使用物质内电刺激来恢复手上的感觉。然而,当前的方法被局限于刺激大脑的陀螺区域,而功能成像表明指尖的表示主要位于沟区域。在这里,我们首次表明,可以通过对大脑的硫磺区域的电刺激来唤起手指尖高度的焦点感知。为此,我们通过刺激人类原发性体感皮质(S1)的陀螺和沟区域来绘制并比较手中引起的感觉。将两名患有顽固性癫痫的参与者与立体电脑摄影(SEEG)深度和高密度电视摄影(HD-ECOG)网格电极植入了高分辨率功能成像。使用人类连接项目开发的髓磷脂含量和皮质厚度图,我们阐明了唤起焦点感知的S1的特定子区域。此外,参与性的比较表明,使用Seeg电极引起的感知的沟刺激明显更大,比通过HD-ECOG电极循环刺激唤起的感知较少80%(P = 0.02),并且更频繁地本地化到指尖。最后,在手掌和指尖机械触觉刺激期间显示出高频神经活性的沟孔位置表现出与硫磺刺激相同的体积对应关系。这些发现表明,微创沟刺激可能会导致恢复感官障碍者的恢复感觉的临床生存方法。
1。高收入:人均GDP至少为$ 12,500; 2。无贫困:0o/o极端贫困和3o/opoverty 3。宏观经济稳定:低通胀(4-5yo),低赤字(占GDP的5%),投资增加(占GDP的40%)和税收增加(占GDP的20%)4。高度人类发展:L00O/O高中教育,包括数字素养,为每个人提供100%的健康融资,同时充分利用我们的人口股息5。可持续驾驶:80%的城市国家,具有100%电气化,多数来自可再生能源6。在指尖服务:100%公共服务无纸和无现金,并以100%公民的指尖