ErbB 受体家族(包括 EGFR 和 HER2)在细胞生长和存活中起着至关重要的作用,并与乳腺癌和肺癌等各种癌症的进展有关。在本研究中,我们开发了一个深度学习模型,使用基于 SMILES 表示的分子指纹来预测 ErbB 抑制剂的结合亲和力。每种 ErbB 抑制剂的 SMILES 表示均来自 ChEMBL 数据库。我们首先从 SMILES 字符串生成 Morgan 指纹,并应用 AutoDock Vina 对接来计算结合亲和力值。根据结合亲和力过滤数据集后,我们训练了一个深度神经网络 (DNN) 模型来根据分子指纹预测结合亲和力值。该模型取得了显著的性能,训练集上的均方误差 (MSE) 为 0.2591,平均绝对误差 (MAE) 为 0.3658,R 平方 (R²) 值为 0.9389。尽管在测试集上性能略有下降(R² = 0.7731),但该模型仍然表现出强大的泛化能力。这些结果表明深度学习方法对于预测 ErbB 抑制剂的结合亲和力非常有效,为虚拟筛选和药物发现提供了宝贵的工具。
1207,孟加拉国 电子邮件:kashpia_tas@live.com 摘要 — 收集和表征地方基因型和地方品种是任何作物改良计划的先决条件。分子多样性和 DNA 分析显示了任何作物的确切基因蓝图。因此,该实验旨在确定一些地方茄子基因型及其野生近缘种之间的分子多样性和多态性,以供未来的育种计划使用。该实验在孟加拉国达卡的 Sher-e-Bangla 农业大学生物技术实验室进行,使用了 25 种茄子地方品种和 2 种野生近缘品种(Solanum sisymbriifolium 和 S. villosum),以研究这些基因型的分子多样性和 DNA 指纹。五个众所周知的 SSR 引物(EPSSR82、smSSR01、EM114、EM120 和 smSSR04)用于基因型的分子表征。分离出具有 27 种基因型的优质 DNA,并使用这些引物进行 PCR 扩增。扩增的 DNA 片段通过 2% 琼脂糖凝胶显影,并通过 POWERMAKER(版本 3.25)和 NTSYS-PC(版本 2.2)分析数据。总共产生了大约 10 个不同的等位基因,每个基因座的范围为 1 至 3 个等位基因,平均为 2.0 个等位基因。在引物 EPSSR82 和 smSSR01 中观察到了最多的多态性带数(2)。SSR 标记的多态性信息含量 (PIC) 范围为 0.37 至 0.67,平均值为 PIC = 0.54。基因多样性范围从 0.49(smSSR01)到 0.72(EPSSR82),平均值为 0.61。 UPGMA 方法将 27 种基因型分为两个主要簇(I 和 II)。在这些簇中,野生种 Solanum villosum 属于亚簇(IIb),显示出与其他品种的明显差异。另一方面,野生种 Solanum sisymbriifolium 与 13 种地方茄子基因型形成同一簇,显示出密切的亲缘关系。在 25 种地方茄子种质及其野生近缘种中鉴定了分子多样性和 DNA 分析。
试图为生物识别验证应用创建更熟悉的脑机互动,我们研究了使用用户的个人爱好,兴趣和内存收集的效率。这种方法创造了独特而愉快的体验,以后可以在身份验证协议中使用。本文介绍了一个新的脑电图数据集,而受试者则观看流行爱好的图像,没有兴趣的图片和具有出色个人意义的图像。此外,我们提出了几种可以通过新收集的数据集来解决的应用程序。也就是说,我们的研究展示了4种应用类型,我们为所有这些应用提供了最先进的结果。已解决的任务是:情绪分类,类别分类,授权过程和人识别。我们的实验显示出对人们身份验证的脑电图可视化响应的巨大潜力。在我们的研究中,我们显示了通过脑电图衡量的识别人的个人爱好偏见的初步结果。此外,我们提出了使用脑电图的新型授权过程范式。代码和数据集可在此处提供。
关于CardLab CardLab是高级生物识别智能卡解决方案和令牌身份平台的领先提供商,专门针对物理和逻辑访问的安全身份验证。与丹麦的总部和研发和泰国的制造设施一起,CardLab开发了高性能的,用户友好的智能卡产品,可整合尖端的生物识别和加密技术,以及高度安全的后端身材验证系统,以实现身份标记验证。我们的解决方案旨在满足全球企业,政府和金融机构不断发展的安全需求。有关更多信息,请访问www.cardlab.com或电子邮件:info@cardlab.com。
1 UK Center for Astrobiology, University of Edinburgh, Edinburgh, United Kingdom, 2 University of Florida, Plant Pathology Department, Space Life Sciences Lab, Exploration Park, Merritt Island, FL, United States, 3 Laboratory for Astrophysics, Leiden Observatory, Leiden University, Leiden, Netherlands, 4 Life Support and Physical Sciences Instrumentation Section, European Space Agency, Nordwijk, Netherlands, 5太空政策研究所,乔治华盛顿大学,华盛顿特区,美国,6德国航空航天中心(DLR),航空医学研究所,航空医学研究所,放射生物学系,研究小组,研究小组,德国,德国,7个中心,生物生物学中心MOLéculaire,MOLéculaire,National de la Rechorche Sciention Institution Instuction Institution Institution Institution Institution Institution Institution Institution Instuction Instription and or e>卫生,微生物学和环境医学,格拉兹,奥地利,奥地利9中心(CSIC-INTA),西班牙马德里,西班牙10 CBMSO,西班牙10 CBMSO,MADIS OHF,11 MATIS OHF,MATIS OHF,微生物学集团,研究与创新部,研究与创新部,食品科学和营养学院,伊克兰大学,冰岛,ICIDEND,ICLEAND)法国斯特拉斯堡
每个生命周期步骤对总GWP的影响取决于研究中所包含的步骤。通常,生产分解为2个子步骤,这是原材料提取和电池的产生([9] - [12]),或者是整体考虑的([13],[14])。对于寿命末而存在相同的现象:可以将其整体思考或分解为2个步骤,它们正在回收和终止寿命。使用阶段包括用于电池操作,维护和电池更换的电力([8],[13],[14])。在这些步骤之间,研究了不同的运输路径:第一个是制造步骤之间的运输([9],[14]),第二个是生产地点和车辆组装现场之间的运输([5],[15])。
2 人链(绿色袋子)和 3 人链(红色袋子)胶囊的制作、包装和运输流程图。每条链重复此过程五次,每条链总共 10 个 ZLB 和 50 个胶囊。参与者 A 在包装胶囊(2 人链)时只接触胶囊(2 人链和 3 人链)和 ZLB。参与者 B 在包装成 ZLB(3 人链)时只接触胶囊,参与者 C 只接触 ZLB(2 人链和 3 人链)的外表面。图片来源:Forensic Science International:Genetics (2024)。DOI:10.1016/j.fsigen.2024.103182
Anshu Yadav国防与战略研究系,Deen Dayal Upadhyaya Gorakhpur大学,Gorakhpur摘要:印度能源安全对于国家安全,可持续发展和经济增长至关重要。能源安全是印度国家安全的重要组成部分,可再生能源为增强印度的能源安全提供了巨大的潜力,旨在通过各种政策和倡议(例如风能能源计划,国家太阳能使命和生物能源任务)来促进能源。增强印度的能源安全包括通过开发先进的储能技术来增强能源安全,从而提高了可再生能源系统的效率。本文的目的是强调能源在印度国家安全中日益重要的重要性,并探讨通过在研究和创新的帮助下通过自我依赖来增强印度能源安全的可能性。提出的论文首先讨论了印度的能源谱,该能源谱系强调了能源安全方案,对能源安全的策略以及印度在能源领域的区域和全球合作。它还提出了政府采取的计划,并分析了可再生能源。本文强调了各个维度对能源安全的各种挑战。最后,本文在未来派的情况下强调了印度在能源安全方面的主要机会。关键字:能源谱,能源安全方案,能源策略,能源合作,可再生能源。国家安全对于一个国家的生存和发展至关重要。简介:国家安全对于印度作为一个国家的生存和发展至关重要,其政策和能力对地区和全球安全具有影响。印度国家安全是指印度政府保护该国的主权,领土完整性以及公民免受内部和外部威胁的方法。“国家安全”一词包括各种领域,包括军事防御,执法,边境安全,情报收集和分析以及网络安全。印度是各种文化,宗教和种姓的家园,其能量模式的消费也是多种多样的。该国在战略上位于一个动荡的地区,与尼泊尔,不丹,孟加拉国,巴基斯坦,中国和缅甸等几个国家共享边界。能源安全是国家安全的重要组成部分。是指对一个国家的经济,社会和政治稳定所必需的不间断可用和可靠的能源的可用性和可靠的可靠性。印度能源安全是一个与国家安全密切相关的复杂问题。能源安全和国家安全直接联系在一起,因为能源是现代经济和社会的重要组成部分。为从运输和行业到
Alec Jeffreys爵士于1984年引入的DNA指纹识别是一种用于确定个人独特DNA特征的技术。它涉及将DNA从人体的任何部位分离出来,用限制酶切割它,使用琼脂糖凝胶电泳分离碎片,通过Southern印迹将DNA转移到尼龙薄片上,增加放射性探针,并通过自显影可视化结果。DNA指纹的关键步骤包括从源中提取DNA,将DNA切成片段,将这些片段分离在凝胶上,然后将其转移到尼龙片中。放射性探针用于添加标记,以突出DNA中核苷酸的特定序列。放射自显影用于可视化这些结果。DNA指纹识别有四个主要应用:解决亲子关系争端,诊断出遗传性疾病,例如囊性纤维化或镰状细胞性贫血,通过血液或精液污渍识别罪犯,并确定战争中杀害的士兵的尸体。由于每个人的DNA的独特性,该技术在争议中被认为是最有效的。DNA指纹识别解释的DNA指纹识别(也称为DNA分析或DNA键入)是一种用于确定个体中DNA重复区域的独特核苷酸序列的技术。这种方法首先由威廉·赫歇尔爵士在1858年用于识别目的。但是,直到1984年,Alec Jeffreys博士在莱斯特大学发明了DNA指纹技术,后来帮助解决了谋杀案和亲子关系纠纷。3人类谱系 - 研究人类谱系。DNA指纹背后的科学涉及确定基因之间发现的重复性DNA序列的独特模式,即被称为可变数字串联重复序列(VNTR)。这些序列具有高度多态性,这意味着它们在个体中差异很大。该技术基于以下原理:除了相同的双胞胎外,没有两个人共享相同的DNA序列。Key aspects of DNA fingerprinting include: - Repetitive DNA: regions where small stretches of DNA sequences are repeated multiple times - Satellite DNA: non-coding regions that form a large part of the human genome and show high polymorphism - Polymorphism: variations at the genetic level due to mutations, playing a crucial role in evolution and speciation - Variable Number of Tandem Repeats (VNTR): short DNA sequences with a high degree of polymorphism, used as genetic markers - Single Nucleotide Polymorphisms (SNPs): variations in DNA sequences where a single nucleotide differs from the normal sequence in at least one percent of the population The principles of DNA fingerprinting involve analyzing the unique combination of DNA sequences found in individuals and identifying short nucleotide repeats that vary in number.该技术用于分析在生物材料中发现的DNA,并基于以下理论:除了相同的双胞胎外,没有两个人共享相同的DNA序列。在RFLP中,首先从细胞中提取DNA,然后通过限制酶碎片。4DNA指纹识别的步骤包括:一种分离的DNA - 这涉及通过离心从细胞中提取的化学纯化DNA。b扩增 - 一种称为PCR的技术乘以提取的DNA拷贝。ans:1。使用限制性核酸内切酶对DNA的消化 - 酶在特定点将DNA分解为片段,产生不同的长度。d分离DNA-通过电泳通过大小分离,这种方法使用电场将带电分子分离。e添加化学物质将DNA片段分成单链。f转移(印迹)使用Southern印迹将DNA片段从凝胶分离到尼龙膜上。g杂交DNA片段与放射性标记的探针进行检测。h自显影术检测到杂交DNA,揭示了反映DNA组成的光和暗带的独特模式。DNA指纹具有各种应用:1个个性 - 除了单卵双胞胎以外,一个人与另一个人与另一个人区分开。2父亲纠纷或产妇争端 - 找到真正的遗传母亲,父亲和后代。4遗传疾病 - 识别与遗传性疾病有关的基因。5取证 - 有助于检测犯罪和法律追求。6社会学 - 确定种族群体,起源,历史移民和入侵。DNA指纹识别是一种识别某些DNA区域中独特的核苷酸序列的技术。它也称为DNA分析,遗传指纹识别,身份测试,基因分型,法医遗传学或DNA键入。人类的独特性在于他们的DNA指纹,除了单卵双胞胎外,没有两个人相同。该技术有助于将一个人与另一个人区分开,解决产妇和亲子关系纠纷并调查刑事案件。DNA指纹的基础依赖于短的核苷酸重复,这些重复的数量因人而异,但被遗传为遗传,称为可变数量串联重复序列(VNTRS)。它还有助于确定遗传性疾病的原因。Q.1:DNA指纹的原理是什么? ans:DNA指纹的最关键需求是短核苷酸重复的重复,其数量因人而异,但遗传为遗传,称为VNTR。 Q.2:DNA指纹的六个步骤是什么? DNA的隔离; 2。 放大DNA并将其切成小片段; 3。 通过凝胶电泳分离DNA片段; 4。 将分离的DNA片段转移到合成膜上; 5。 使用放射性标记的探针杂交;和6。 检测杂交DNA片段。 Q.3:DNA指纹的应用是什么? ans:它有助于将一个人与另一个人区分开,除了单卵双胞胎。确定真正的遗传母亲,父亲和后代;研究人血统;并将基因与遗传疾病联系起来。 Q.4:DNA指纹的父亲是谁? ans:Alec Jeffreys博士被称为DNA指纹的父亲。 Q.5:为什么它称为DNA指纹识别? ans:DNA指纹是一种独特的模式,可以与其他个体的模式区分开来,从而成为识别两个个体之间的相似性和差异的有效方法。 DNA指纹(DNA分析)是Alec Jeffreys于1985年开发的一种技术。Q.1:DNA指纹的原理是什么?ans:DNA指纹的最关键需求是短核苷酸重复的重复,其数量因人而异,但遗传为遗传,称为VNTR。Q.2:DNA指纹的六个步骤是什么? DNA的隔离; 2。 放大DNA并将其切成小片段; 3。 通过凝胶电泳分离DNA片段; 4。 将分离的DNA片段转移到合成膜上; 5。 使用放射性标记的探针杂交;和6。 检测杂交DNA片段。 Q.3:DNA指纹的应用是什么? ans:它有助于将一个人与另一个人区分开,除了单卵双胞胎。确定真正的遗传母亲,父亲和后代;研究人血统;并将基因与遗传疾病联系起来。 Q.4:DNA指纹的父亲是谁? ans:Alec Jeffreys博士被称为DNA指纹的父亲。 Q.5:为什么它称为DNA指纹识别? ans:DNA指纹是一种独特的模式,可以与其他个体的模式区分开来,从而成为识别两个个体之间的相似性和差异的有效方法。 DNA指纹(DNA分析)是Alec Jeffreys于1985年开发的一种技术。Q.2:DNA指纹的六个步骤是什么?DNA的隔离; 2。 放大DNA并将其切成小片段; 3。 通过凝胶电泳分离DNA片段; 4。 将分离的DNA片段转移到合成膜上; 5。 使用放射性标记的探针杂交;和6。 检测杂交DNA片段。 Q.3:DNA指纹的应用是什么? ans:它有助于将一个人与另一个人区分开,除了单卵双胞胎。确定真正的遗传母亲,父亲和后代;研究人血统;并将基因与遗传疾病联系起来。 Q.4:DNA指纹的父亲是谁? ans:Alec Jeffreys博士被称为DNA指纹的父亲。 Q.5:为什么它称为DNA指纹识别? ans:DNA指纹是一种独特的模式,可以与其他个体的模式区分开来,从而成为识别两个个体之间的相似性和差异的有效方法。 DNA指纹(DNA分析)是Alec Jeffreys于1985年开发的一种技术。DNA的隔离; 2。放大DNA并将其切成小片段; 3。通过凝胶电泳分离DNA片段; 4。将分离的DNA片段转移到合成膜上; 5。使用放射性标记的探针杂交;和6。检测杂交DNA片段。Q.3:DNA指纹的应用是什么? ans:它有助于将一个人与另一个人区分开,除了单卵双胞胎。确定真正的遗传母亲,父亲和后代;研究人血统;并将基因与遗传疾病联系起来。 Q.4:DNA指纹的父亲是谁? ans:Alec Jeffreys博士被称为DNA指纹的父亲。 Q.5:为什么它称为DNA指纹识别? ans:DNA指纹是一种独特的模式,可以与其他个体的模式区分开来,从而成为识别两个个体之间的相似性和差异的有效方法。 DNA指纹(DNA分析)是Alec Jeffreys于1985年开发的一种技术。Q.3:DNA指纹的应用是什么?ans:它有助于将一个人与另一个人区分开,除了单卵双胞胎。确定真正的遗传母亲,父亲和后代;研究人血统;并将基因与遗传疾病联系起来。Q.4:DNA指纹的父亲是谁? ans:Alec Jeffreys博士被称为DNA指纹的父亲。 Q.5:为什么它称为DNA指纹识别? ans:DNA指纹是一种独特的模式,可以与其他个体的模式区分开来,从而成为识别两个个体之间的相似性和差异的有效方法。 DNA指纹(DNA分析)是Alec Jeffreys于1985年开发的一种技术。Q.4:DNA指纹的父亲是谁?ans:Alec Jeffreys博士被称为DNA指纹的父亲。Q.5:为什么它称为DNA指纹识别?ans:DNA指纹是一种独特的模式,可以与其他个体的模式区分开来,从而成为识别两个个体之间的相似性和差异的有效方法。DNA指纹(DNA分析)是Alec Jeffreys于1985年开发的一种技术。它基于在DNA中发现的重复序列,该序列在密度梯度离心过程中与大量基因组DNA分离。这种分离形成了一种唯一的峰值模式,称为卫星DNA,基于基础组成,段的长度和重复单位的数量,被归类为微卫星,迷你 - 卫星等。可变数字串联重复序(VNTR)属于迷你 - 卫星DNA,并且针对每个人,大小从0.1到20 kb不等。vntr拷贝数在每个染色体上的父亲和产妇等位基因之间有所不同,使其成为每个人的唯一标识符。DNA多态性在进化和物种过程中起着至关重要的作用。DNA指纹技术涉及多个关键步骤,包括从各种来源分离出DNA,例如细胞,血迹或唾液,然后消化,并具有限制性核酸内切核酸酶,通过凝胶电泳分离片段,并将其转移到合成膜上。接下来,使用带有放射性标记的VNTR探针进行杂交,从而导致自显影图显示黑暗和光带。这种独特的模式称为DNA指纹,除了单卵双胞胎的情况外,每个人都不同。可以使用聚合酶链反应(PCR)增强该技术的灵敏度,从而从单个细胞中启用DNA分析。DNA指纹的应用是多种多样的,并将其用作法医工具来解决诸如亲子纠纷,强奸或谋杀之类的犯罪。它还有助于诊断遗传疾病,确定动物的系统发育状况以及评估人口和遗传多样性。
老芒麦是一种优良的饲草和生态修复草,在草原生态建设和畜牧业可持续发展中发挥着重要作用。中国老芒麦野生种质资源丰富,相似和对比的气候条件塑造了不同的种群,丰富了老芒麦的遗传多样性。为了更全面、低成本地聚合老芒麦种质资源,更精准地利用其遗传变异,本研究对老芒麦核心种质资源收集及利用单核苷酸多态性(SNP)标记进行指纹分析进行了初步探索。通过多种评价指标结合加权处理,从90份野生老芒麦样品中成功鉴定出36份材料作为核心种质。 36个核心种质样品的遗传多样性评估、等位基因评估和主成分分析均表明这36个样品准确、全面地代表了90份老麦种质的遗传多样性。另外,从90份老麦样品全基因组测序产生的高质量SNP位点中,鉴定出290个SNP位点作为候选标记,其中52个SNP位点被筛选为老麦DNA指纹分析的核心标记。并利用竞争性等位基因特异PCR(KASP)技术,基于这些核心标记对60份野生老麦种质进行了居群起源鉴定。本研究筛选出的核心SNP标记能够准确区分来自青藏高原和其他地区的老麦种质资源,为老麦种质资源的继续收集和鉴定提供参考,也为老麦种质资源的保存和利用提供科学依据。