访问地址:Allégatan 1 · 邮政地址:501 90 Borås · 电话:033-435 40 00 · 电子邮件:registrator@hb.se · 网站:
第六届人工智能城市挑战赛专门关注两个领域的问题,这两个领域在计算机视觉和人工智能的交叉点上具有巨大的未开发潜力:智能交通系统 (ITS) 和实体零售业务。2022 年人工智能城市挑战赛的四个挑战赛道收到了来自 27 个国家/地区的 254 支队伍的参与请求。赛道 1 涉及城市规模的多目标多摄像头 (MTMC) 车辆跟踪。赛道 2 解决基于自然语言的车辆轨迹检索。赛道 3 是一个全新的自然驾驶分析赛道,其中数据由安装在车辆内的多个摄像头捕获,重点关注驾驶员安全,任务是对驾驶员行为进行分类。赛道 4 是另一个新赛道,旨在仅使用单视角摄像头实现零售店自动结账。我们根据不同的方法发布了两个排行榜,包括比赛公开排行榜(不允许使用外部数据)和所有提交结果的综合排行榜。参赛队伍的顶尖表现建立了强大的基线,甚至超越了拟议挑战赛道中的最先进水平。
摘要:人工智能 (AI) 结合了算法、机器学习和自然语言处理的应用。AI 在教育领域有多种应用,例如自动评估和面部识别系统、个性化学习工具和微博系统。这些 AI 应用有可能通过支持学生的社交和认知发展来提高教育能力。尽管具有这些优势,但 AI 应用仍存在严重的伦理和社会缺陷,而这些缺陷在 K-12 教育中很少被考虑。将这些算法融入教育可能会加剧社会现有的系统性偏见和歧视,使来自边缘化和服务不足群体的学生的隐私、自主权和监视问题长期存在,并加剧现有的性别和种族偏见。在本文中,我们探讨了 AI 在 K-12 教育中的应用,并强调了它们的道德风险。我们引入教学资源,帮助教育工作者应对整合人工智能的挑战,并提高 K-12 学生对人工智能和道德的理解。本文最后提出了研究建议。
本文试图探索法律与人工智能之间的相互联系,重点关注其范围和挑战。人工智能自诞生以来就飞速发展,旨在将人类思维复制到机器中。尼泊尔最大的邻国已向前迈进了一步,开发了第一个律师机器人,但在尼泊尔,其范围尚未得到研究和讨论。因此,本文探讨了尼泊尔法律领域人工智能的不断增长的范围和挑战。它分析了人工智能在法律领域的范围,以找出其在法律研究、判例法管理、电子发现、文件准备、合同审查、证据评估等法律领域的重要性。尽管在法律领域有充足的空间,但它面临着许多挑战,包括实施成本高昂的问题。政策制定者需要更多地了解基于人工智能的工具来发展国家。本文的结论是,尽管有足够的空间,但在尼泊尔实施人工智能和基于法律的工具仍然很困难。应该进行适当的研究来实施基于人工智能的工具来取代法律领域的旧传统机制。
© 作者 2024。由牛津大学出版社代表欧洲心脏病学会出版。这是一篇根据知识共享署名-非商业许可条款分发的开放获取文章(https://creativecommons.org/licenses/by-nc/4.0/),允许在任何媒体中进行非商业性再利用、分发和复制,前提是对原始作品进行适当引用。对于商业再利用,请联系 reprints@oup.com 获取重印和翻译重印权。所有其他许可都可以通过我们网站文章页面上的许可链接通过我们的 RightsLink 服务获得——有关更多信息,请联系 journals.permissions@oup.com。1
AI 城市挑战赛的创立秉承两个目标:(1)推动智能视频分析研究和开发的边界,以实现更智能的城市用例;(2)评估性能水平足以引起现实世界采用的任务。交通运输是适合采用该技术的一个领域。第五届 AI 城市挑战赛吸引了来自 38 个国家的 305 支参赛队伍,他们利用城市规模的真实交通数据和高质量的合成数据在五个挑战赛道上展开角逐。赛道 1 涉及基于视频的自动车辆计数,评估内容包括算法有效性和计算效率。赛道 2 涉及城市规模的车辆重新识别,使用增强合成数据大幅增加了该任务的训练集。赛道 3 解决了城市规模的多目标多摄像头车辆跟踪问题。赛道 4 解决了交通异常检测问题。赛道 5 是一条新赛道,使用自然语言描述解决车辆检索问题。评估系统显示了所有提交结果的一般排行榜,以及仅限于比赛参与规则的结果公开排行榜,其中团队不得在工作中使用外部数据。公开排行榜显示的结果更接近注释数据有限的真实情况。结果显示了人工智能在智能交通中的前景。某些任务的最新性能表明这些技术已准备好在现实世界系统中采用。
图像超分辨率是最流行的计算机视觉问题之一,在移动设备上有许多重要的应用。虽然已经为这项任务提出了许多解决方案,但它们通常甚至没有针对常见的智能手机 AI 硬件进行优化,更不用说通常仅支持 INT8 推理的更受限的智能电视平台了。为了解决这个问题,我们推出了第一个移动 AI 挑战赛,其目标是开发一种基于端到端深度学习的图像超分辨率解决方案,该解决方案可以在移动或边缘 NPU 上展示实时性能。为此,为参与者提供了 DIV2K 数据集和训练过的量化模型,以进行高效的 3 倍图像升级。所有模型的运行时间都在 Synaptics VS680 智能家居板上进行评估,该板具有能够加速量化神经网络的专用 NPU。所提出的解决方案与所有主流移动 AI 加速器完全兼容,能够在 40-60 毫秒内重建全高清图像,同时实现高保真度结果。本文提供了挑战赛中开发的所有模型的详细描述。
程序性死亡受体 1 (PD-1) 充当 T 细胞制动器,其与配体 1 (PD-L-1) 的相互作用会干扰 T 细胞受体的信号转导。这导致肿瘤微环境中 T 细胞存活、增殖和活性受到抑制,从而导致抗癌免疫力受损。PD-1/PD-L-1 相互作用阻断在各种癌症免疫疗法中表现出显著的临床成功。迄今为止,大多数获准用于临床的 PD-1/PD-L-1 阻断剂都是单克隆抗体 (mAb);然而,由于部分患者的临床反应不佳,它们的治疗用途受到限制。mAb 还表现出肿瘤渗透性低、生产成本高以及免疫相关副作用的发生率。这强烈表明了开发新型抑制剂作为癌症免疫治疗剂的重要性。最近,直接阻断 PD-1/PD-L-1 轴的小分子抑制剂 (SMI) 的进展引起了参与癌症研究的科学界的关注。SMI 比 mAb 具有某些优势,包括半衰期更长、成本低、细胞渗透性更强以及可以口服。目前,有几种 SMI 正在开发中,作为癌症免疫疗法的潜在疗法。为了开发新的 SMI,人们探索了各种各样的结构支架,并取得了优异的成果;联苯基支架研究最多。在这篇综述中,我们分析了针对 PD-1/PD-L-1 轴用于癌症治疗的 mAb 和 SMI 的开发。总之,本综述深入探讨了与 mAb 使用相关的问题,并详细讨论了 SMI 的发展和现状。本文可为药物化学家提供关于 PD-1/PD-L-1 相互作用抑制所需的潜在结构支架的全面指南。
我确定了 AI 如何成为问题的创造性解决方案。我在设计过程中考虑了限制因素。在设计过程中,我预见并解决了解决方案面临的挑战。我从头到尾规划并考虑了用户的体验。我反思了从我的设计经验中获得的见解和成长领域。
2.2二级数据收集:包括公开可用信息,官方报表,记录事件或与废物管理,医院,市政计划或环境问题有关的新闻报告用于收集次要数据。新闻报道是有记录的事件和公众观点的宝贵来源。访问网站提供了一个平台来收集广泛的信息,包括与废物管理实践有关的官方文件,报告,政策和统计数据,市政当局,医院合作伙伴关系或环境法规。市政当局,医院,环境机构和相关组织的官方网站提供可信和更新的信息。
