最初的任务概念研究,以评估使用纳米卫星在近地空间中使用纳米卫星进行操作空间天气监测的可行性(延迟,寿命,可靠性)。
碳纤维增强聚合物(CFRP)复合材料由于其出色的强度与重量比,广泛用于工程应用中。这些复合材料受到恒定和可变的各种负载,这使它们容易在结构中损坏积累。这降低了他们的使用寿命并对他们的表现产生负面影响。这项研究研究了使用低周期疲劳(LCF)程序在一个标本和可变载荷的恒定载荷下进行CFRP层压板的故障行为,直到在两种测试中都达到完全失败为止。实验过程涉及使用专门设计的设备,一旦将其牢固地固定到位,就可以通过内部气压施加载荷。根据其最大挠度测量值对标本的观察到的变形进行跟踪。实验结果与理论结果吻合良好。在试样失败时,样品在静态载荷下的最大挠度为(8.975 mm);相比之下,在样品的内部结构逐渐恶化之前,在样品的内部结构逐渐恶化后,试样失败时样品在低周期疲劳下的最大挠度为(12.32 mm)。在低周期疲劳(LCF)测试下,使用扫描电子显微镜(SEM)分析样品。硬度测试是在实验工作之前和之后进行的,以跟踪失败机制,其中包括逐渐的故障阶段。结果和讨论将详细说明材料硬度的明显恶化。实验结果表明,在复合材料的两种测试中,都与理论值和高级见解相吻合。
1. 简介 1.1. 材料力学在设计中的作用 1.2. 材料行为和失效模式 2. 材料的弹性和非弹性行为 2.1. 单轴载荷下的线性弹性行为 2.2. 非线性和非弹性行为 2.3. 屈服准则 2.4. 断裂机制 3. 生物系统中材料的力学行为 3.1. 钢材 3.2. 混凝土 3.3. 木材 3.4. 骨骼 3.5. 柔性材料 3.6. 其他材料 4. 梁的弯曲分析 4.1. 梁的适用性 4.2. 梁挠度方程 4.3. 挠度分析方法 5. 柱的稳定性分析 5.1. 结构的稳定性 5.2. 欧拉公式 5.3. 侧向支撑 5.4. 柱设计 6. 结构分析中的能量方法简介(可选) 6.1. 应变能 6.2功能法 6.3. 卡斯蒂利亚诺定理
附有拟议的监测位置布局图(RILEY Dwg:180478-10)。该图描绘了现有压力计(MH1 和 HA3)的位置,以及拟议的地下水、沉降和挠度监测位置。所有监测位置和方法将在开发详细设计阶段的最终 GSMCP 中确认。拟将沉降监测点安装在场地边界周围的局部位置、住宅的近角和游泳池周围(21 Whitby Crescent)。拟将墙体挠度监测点作为倾斜仪,安装在护墙桩挡土墙内以支撑地下室挖掘。这些点的位置和数量将在地下室挡土墙的详细设计期间确认。我们预计可能需要在护墙桩挡土墙上再建立六到十个监测点。场地的南边界和西边界上还有一条现有的水、雨水和下水道管道,应通过闭路电视进行检查。
热固性。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19玻璃过渡温度(T G)和使用温度。。。。。。。。。21热挠度温度或热失真温度(HDT)。。。。。。。21个常见的热固性矩阵系统。。。。。。。。。。。。。。。。。。。。。。。。。。22个混合树脂。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。24个生物黄星。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。25固化和交联的原则。。。。。。。。。。。。。。。。。。。。。。。。。27
本研究探索了用多壁碳纳米管 (MWCNT) 增强的聚乳酸 (PLA) 复合材料的机械性能,重点研究了它们在三角形、倾斜和弯曲支架几何形状中的性能。拉伸试验表明,拉伸应力随 MWCNT 浓度增加而增加,最高可达 3 wt.%,但在 5 wt.% 时降低。较低浓度下机械性能的提高归因于 PLA 基质内 CNT 的均匀分散,从而促进了有效的负载传递。相反,在 5 wt.% 时,MWCNT 团聚会破坏基质的连续性,导致机械性能下降。CNT 与负载方向的对齐会显著影响性能,0° 打印角度由于优化的负载传递而产生更高的拉伸强度。支架的几何结构进一步影响挠度行为;观察到最大挠度随着 MWCNT 含量的增加而降低,特别是在 3 wt.% 时,但在 5 wt.% 时略有增加,表明由于聚集导致刚度降低。这项工作强调了 CNT 浓度和几何设计在优化 PLA/MWCNT 复合材料的机械特性中的重要性;揭示了改变几何形状如何影响应力分布对整体性能的影响。
摘要。为了克服有限元方法的网格依赖性,作者提出了遗传算法在用肋板和梁对弹性基础的无网状优化中的应用。肋板被视为板和梁的组合。基于无网状方法并与遗传算法相结合,优化了矩形肋板的肋骨排列位置,以最大程度地减少侧向载荷下肋骨板的中心点的偏转。与传统的有限元方法相比,使用作者的无网格方法进行肋骨位置优化肋板的分析不需要网格重建,并且在板上离散的节点和肋骨总是不需要更改。结果表明,与第二代人相对应的中心点的挠度值更加集中,并且与第一代相比,挠度值较小的个体也更加集中。混合遗传算法确实有效。作者添加了受约束的随机方向方法,以基于遗传算法形成混合遗传算法,该算法会加速收敛速度,降低计算重复速率,并显着降低遗传算法的计算代数,从而将其降低到两到三代。
摘要。小行星影响与挠度评估(AIDA)是NASA DART任务与ESA HERA任务之间的合作。目的范围是通过动力学碰撞研究小行星挠度。DART航天器将与Didymos-B碰撞,而地面站监视轨道变化。HERA航天器将研究影响后情况。HERA航天器由主航天器和两个小立方体组成。HERA将通过摄像头,雷达,卫星到卫星多普勒跟踪,LIDAR,地震测定法和重力法监测小行星。在本文中报道了LIDAR工程模型高度计Helena上的第一次迭代。Helena是一个TOF高度计,可提供时间标记的距离和速度测量值。LIDAR可用于在小行星导航附近的支持,并提供科学信息。Helena设计包括一个微芯片激光和低噪声传感器。这两种技术之间的协同作用使得可以开发一种紧凑的仪器,以达到14公里的范围测量。热力学和辐射模拟。该设计受到振动,静态和热条件的影响,并且可以通过结果结论,望远镜符合随机振动水平,静态负载和工作温度。
高级分析工具结合了基于时间和频域的模态分析和曲线拟合技术,包括 Simcenter Testlab Polymax 模态参数识别软件。您可以在数据采集的同时运行操作挠度形状或模态分析。初步模态结果可帮助您验证数据质量并当场获得有价值的见解。模式动画可立即显示缺失的测量值或不正确的校准值,而初步模态形状可以向您显示需要额外测量点或不同激励位置的位置。
薄壁结构 – 机翼;机身;尾翼;薄壁近似。金属材料 – 材料化学;成型;轻质合金;超级合金。复合材料 – 混合规则;层压板理论;制造;功能复合材料。航空航天结构部件分析 – 弯曲;剪切;扭转;组合载荷;应力;扭转角;挠度;疲劳;断裂。无损检测 – 超声波检测;压电换能器;导波检测;相控阵扫描;结构健康监测。有限元分析 – 一维元素;二维元素;三维元素;高阶元素;静态分析;动态分析。