智能复合材料 (SC) 用于执行器和能量收集器等机电系统。通常,薄壁部件(例如梁、板和壳)被用作结构元件,以实现这些复合材料所需的机械行为。SC 表现出各种高级特性,从压电和压磁等低阶现象到挠电和挠磁等高阶效应。最近在智能复合材料中发现的挠磁现象是在有限条件下进行研究的。对现有文献的回顾表明,当存在挠磁效应 (FM) 时,缺乏对 SC 的三维 (3D) 弹性分析的评估。为了解决这个问题,控制方程将包含项 ∂ / ∂ z ,其中 z 表示厚度坐标。变分技术将指导我们进一步开发这些控制方程。我们将利用各种假设和理论,如3D梁模型、von K'arm'an应变非线性、Hamilton原理以及成熟的正、逆FM模型,推导出厚复合梁的本构方程。进行3D分析意味着应变和应变梯度张量必须以3D形式表示。加入项∂/∂z需要构建不同的模型。值得注意的是,目前的商用有限元代码无法准确、充分地处理微米和纳米级固体,因此使用这些程序来模拟挠磁复合结构是不切实际的。因此,我们将推导出的特征线性三维弯曲方程转换为3D半解析多项式域以获得数值结果。这项研究证明了进行三维力学分析对于探索智能结构中多种物理现象的耦合效应的重要性。
随着人工智能(AI)社会应用的推进,人们正在探索将人工智能应用于艺术和设计等创意领域。尤其是,许多研究和作品示例已经表明,人工智能可以通过使用生成对抗网络(GAN)和其他生成模型来生成“逼真”的图像和音乐,就好像它们是人类创造的一样。另一方面,有人可能会认为生成模型所做的只是从训练数据中学习到的统计模式的再现,并质疑它们作为表达的新颖性和独创性。在本文中,我们研究了人工智能和创造力的现状,并提出了一种通过扩展 GAN 框架来创造新颖表达,尤其是音乐表达的方法。通过这些,我们考虑了人工智能将在未来为创造不仅仅是模仿人类创作的表达做出贡献。
[1] Sato, Y.、Henley, EJ、Inoue, K.:“机器人危险控制系统设计的动作链模型”,IEEE Trans. on Reliability,第 39 卷,第 2 期,(1990 年 6 月)。[2] Kawashima, O.、Sato, Y.(2015 年):”
为任何软件工具,固件或类似的辅助手段提供非歧视性访问,以确保备用电池的全部功能以及在更换期间和之后安装的设备的全部功能; 在制造商,进口商或授权代表的免费访问网站上提供有关设备所有者通知和授权替换电池电池的通知和授权的程序的描述;该程序应允许远程提供通知和授权; 在提供对软件工具,固件或类似辅助手段的访问权限之前,制造商,进口商或授权代表只需收到设备所有者的通知和授权即可。也可以通过所有者的明确书面同意书来提供此类通知和授权; 制造商,进口商或授权代表应在收到请求后的3个工作日内提供对软件工具,固件或类似辅助手段的访问权限,并在适用的情况下进行通知和授权。
总结优点和缺点。 讨论始终在友好的气氛中进行。 首先,学生各自思考主题,然后两人一组交换意见。 *时间分配得恰到好处,没有浪费任何时间,因此学生的思考不会被打断,并能不断加深。 与全班同学分享 (3)在人工智能普及的社会里,什么对于人类来说是重要的? 在开始写作之前,让每一对学生在 jam 板上进行工作。