Farhana Yasmin Rahman farhana.physics@tripurauniv.ac.in Debajyoti Bhattacharjee debu_bhat@hotmail.com Syed Arshad Hussain * 通讯作者 邮箱:sa_h153@hotmail.com, sahussain@tripurauniv.ac.in (SAH) 电话:+919402122510 (M),传真:+913812374802 (O) ORCID:0000-0002-3298-6260
2不列颠哥伦比亚大学微生物学和免疫学系,加拿大温哥华大学,加拿大温哥华,3个生命科学研究所,不列颠哥伦比亚大学,不列颠哥伦比亚省,不列颠哥伦比亚省,卑诗省,加拿大,加拿大,4 ionicon Analytik geselltik gesellschaft M.B.H.在数据分析中,国家传感器研究中心,都柏林城市大学化学科学学院,都柏林9号,爱尔兰,爱尔兰9号,生物信息学研究生课程,不列颠哥伦比亚大学,不列颠哥伦比亚大学,不列颠哥伦比亚省温哥华大学,加拿大,加拿大8号,8岁不列颠哥伦比亚省温哥华,加拿大10 Ecoscope培训计划,不列颠哥伦比亚大学,不列颠哥伦比亚省温哥华,不列颠哥伦比亚省,加拿大
低维材料表现出奇特的物理特性。其中,过渡金属二硫属化物 (TMDs) 层状半导体材料,例如 MoS 2 、MoSe 2 、MoTe 2 、WS 2 、WSe 2 、WTe 2 和 PdSe 2,作为后硅时代的可能候选材料而备受关注 [1]。这些二维 TMD 纳米材料的单层 [2] 作为半导体,表现出高效的光吸收率,从而可制成高响应度的光电探测器 [3]。TMD 的主要技术特性以 MX2 形式呈现。其中,M 是由六边形排列的原子组成的薄片,堆叠在两层 X 原子之间。这些晶体的三层被弱范德华力夹住,导致块状晶体分离为单个二维薄片 [4]。相邻三层之间缺乏共价键,导致2D TMD 薄片中悬挂键短缺。
摘要:Magnaporthe Oryzae Triticum(MOT)病原体是小麦爆炸的因果因素,它造成了显着的经济损失,并威胁了南美,亚洲和非洲的小麦产量。使用大米和小麦种子的三种细菌菌株(B. uttilis bts-3,B。Velezensisbts-4和B. velezensis btlk6a)用于探索芽孢杆菌SPP的挥发性有机化合物(VOC)的抗真菌作用。是针对MOT的潜在生物防治机制。所有细菌治疗都显着抑制了体外MOT的菌丝体生长和孢子形成。我们发现这种抑制是由剂量依赖性方式引起的。此外,与未经处理的对照相比,使用脱离小麦叶子感染的生物防治测定显示叶片病变降低和孢子形成。单独使用B. velezensis bts-4或一个始终抑制MOT的MOT在体外和体内抑制的处理。与未处理的对照相比,BTS-4的VOC和Bacillus联盟的VOC分别将体内的MOT病变降低了85%和81.25%。通过气相色谱 - 质谱法(GC – MS)鉴定出了四种芽孢杆菌处理的三十九个VOC(来自九个不同的VOC组),其中11个在所有芽孢杆菌治疗中均产生11个。醇,脂肪酸,酮,醛和含S的化合物。使用纯VOC的体外测定表明,己酸,2-甲基丁酸和苯基乙醇是芽孢杆菌SPP发出的潜在VOC。对MOT的抑制作用。对于2-甲基丁酸和己酸的苯基乙醇和500 mM的MOT孢子形成的最小抑制浓度为250 mm。因此,我们的结果表明来自Bacillus spp的VOC。是抑制MOT生长和孢子形成的有效化合物。了解Bacillus VOC施加的MOT孢子减少机制可能会提供新的选择,以管理孢子的进一步传播小麦爆炸。
摘要:本研究研究了两株粟酒裂殖酵母菌株(NCAIM Y01474 T 和 SBPS)和两株日本裂殖酵母菌株(DBVPG 6274 T、M23B)发酵苹果汁的能力,并与酿酒酵母 EC1118 进行了比较,以了解它们对苹果酒挥发性化合物的影响。裂殖酵母的乙醇耐受性和脱酸能力使其成为常用酿酒酵母发酵剂的潜在替代品。尽管时间过程不同(10-30 天),但所有菌株均可完成发酵过程,裂殖酵母菌株降低了苹果汁中的苹果酸浓度。结果表明,每种酵母对苹果酒的挥发性成分都有不同的影响,使用主成分分析可以分离最终产品。苹果酒的挥发性成分在醇、酯和脂肪酸的浓度方面表现出显著差异。具体来说,絮凝剂菌株 S. japonicus M23B 增加了乙酸乙酯(315.44 ± 73.07 mg/L)、乙酸异戊酯(5.99 ± 0.13 mg/L)和异戊醇(24.77 ± 15.19 mg/L)的含量,而 DBVPG 6274 T 使苯乙醇和甲硫醇的含量分别增加到 6.19 ± 0.51 mg/L 和 3.72 ± 0.71 mg/L。在 S. cerevisiae EC1118 发酵的苹果酒中检测到大量萜烯和乙酯(例如辛酸乙酯)的产生。这项研究首次证明了 S. japonicus 在苹果酒酿造中的应用可能性,可以为产品提供独特的芳香味”。
1 内布拉斯加大学林肯分校物理和天文系,内布拉斯加州林肯市 68588,美国;888tke405@gmail.com (TKE);guanhuahao@huskers.unl.edu (GH);neojxy@gmail.com (XJ);andrew.yost@okstate.edu (AJY);xiaoshan.xu@unl.edu (XX) 2 劳伦斯伯克利国家实验室先进光源,加利福尼亚州伯克利市 94720,美国 3 印第安纳大学普渡大学印第安纳波利斯分校物理系,印第安纳州印第安纳波利斯 46202,美国;aamosey@iupui.edu (AM);daleas@iupui.edu (ASD) 4 俄克拉荷马州立大学物理系,俄克拉荷马州斯蒂尔沃特市 74078,美国 5 桑迪亚国家实验室先进材料科学系,新墨西哥州阿尔伯克基市 87185,美国; krsapko@sandia.gov (KRS); gtwang@sandia.gov (GTW) 6 分子铸造厂,劳伦斯伯克利国家实验室,伯克利,加利福尼亚州 94720,美国;JianZhang@lbl.gov 7 德克萨斯大学达拉斯分校电气工程系,理查森,德克萨斯州 75080,美国;Andrew.Marshall@utdallas.edu 8 佐治亚理工学院电气与计算机工程学院,791 Atlantic Drive NW,亚特兰大,乔治亚州 30332,美国;azad@gatech.edu * 通信地址:atndiaye@lbl.gov (ATN); rucheng@iupui.edu (RC); pdowben1@unl.edu (PAD);电话:+1-510-486-5926 (ATN);+1-317-274-6902 (RC); +1-402-472-9838 (PAD) † 对本工作有同等贡献。
Internet技术(IoT)的进步推动了灵活/可穿戴气体传感器的开发。在这方面,电阻性气体传感器由于其高灵敏度,稳定性,低功耗,低运营成本以及易于集成到可穿戴电子产品而引起了很多关注。电导性聚合物材料越来越多地用作电阻气体传感器中的电子材料[1-3]。在这方面,观察到低成本和用户友好的传感器的兴趣显着增加[4,5]。电阻传感器的主要问题是低灵敏度,选择性和测量参数的狭窄变化范围。这源于有机半导体的低电荷载体迁移率[3]。增加电荷载体迁移率的方法之一可能是使用分隔两个聚合物膜的区域的界面电导率[6]。早些时候,在研究[7]中,在各种挥发性有机化合物(VOC)的大气中,聚合物膜界面的电导率浓度依赖性。这项工作的目的是研究在两种有机介电聚二苯基苯基苯基苯乙烯的亚微米膜上形成的准二维结构的可能性[7-9]作为生物气体传感器的基础。实验样品由两种聚合物膜组成,它们之间有电极(图1)。通过在2000 rpm中在环己酮中的聚合物溶液离心1分钟,在载玻片上形成了底部膜。应用膜后,将样品进行两阶段的干燥:首先在正常条件下进行60分钟,然后在150℃的真空中进行60分钟。之后,通过热填料溅射形成50 nm厚的金电极和2 mm的长度;电极间距离约为30 µm。根据上述过程制造顶部聚合物层。底部的聚合物层厚度为800 nm
在癌症检测领域,负担得起,快速和用户友好的传感器的发展能够检测到包括肺癌(LC)在内的各种癌症生物标志物(包括肺癌)具有最大意义。传感器有望在各种疾病的早期诊断中发挥关键作用。在选项范围内,传感器由于其成本效益,简单性和有希望的分析性能而尤其吸引了各种疾病的诊断。对分子印刷聚合物(MIP)的应用作为气体传感器中有希望的识别元件的兴趣越来越大。mips作为一种用于感测分析物的领先技术,在不存在合适的生物感受器的情况下,通常在人工传感中使用,可以根据挥发性生物标志物的检测来应用于早期疾病诊断等关键领域。对各种疾病的早期,无创发现和对健康状况的自我监控的需求很大。在护理点模式下对生物标志物的检测仍然具有挑战性,并且受到各种因素的限制。因此,由于其成本相对较低,非侵入性抽样方法和快速检测能力,呼吸分析在医疗保健中受到了极大的关注。在本综述中,对基于MIP的传感器的最新发展及其在疾病诊断方面的效用是对疾病诊断的。此外,基于MIP传感器的挑战和观点得到了详细说明,以期介绍市场和成功的商业化。
上下文。Atacama大毫米/亚毫米阵列(ALMA)透露,原始盘的毫米灰尘结构极为多样,从小而紧凑的灰尘盘到具有多个环和间隙的大型灰尘盘。已经提出,内部圆盘中H 2 O发射的强度特别取决于外盘中的冰卵石的涌入,这一过程将与外尘盘半径相关,并且可以通过压力凸起来预防。此外,灰尘结构还应影响内盘中其他气体物种的发射。由于陆地行星可能在内部圆盘区域形成,因此了解其组成是感兴趣的。目标。这项工作旨在评估压降对内盘分子储层的影响。存在尘埃间隙,并可能在圆盘上较远的巨型行星形成,可能会影响内盘的组成,从而影响陆地行星的构建块。方法。使用詹姆斯·韦伯(James Webb)空间望远镜(JWST)上中红外仪器(MIRI)中型仪器(MIRI)中型培养物(MRI)的敏感性和光谱分辨率与Spitzer相比,我们比较了H2 O,H2 O,HCN,C 2 H 2的观察性发射特性,并与Alma观察的二张外粉丝观察,并确认二张外的盘中,并在ALMA观察中进行杂物,并在ALMA观察中涂鸦,并在Alma观察中涂鸦,并在Alma观察中,在Alma观察中,中间涂抹量宽度有数十个天文单位的椎间盘,周围有m⋆≥0的恒星。45m⊙。 结果。 我们发现,尘埃间隙的存在并不一定会导致H 2 O发射弱。45m⊙。结果。我们发现,尘埃间隙的存在并不一定会导致H 2 O发射弱。我们使用了新的可见性平面拟合ALMA数据来确定外尘盘半径并识别盘中的子结构。此外,相对缺乏较冷的H 2 O-发射似乎与含碳物种的发射升高有关。,大多数显示碳种类可检测到的发射。盘子和极宽的圆盘似乎作为一个有点独立的群体,具有更强的冷H 2 O发射和弱温暖的H 2 O发射。结论。我们得出的结论是,即使对于具有非常宽的间隙或空腔的盘子,完全阻塞径向尘埃似乎很难实现,这仍然可以显示出明显的冷H 2 O发射。但是,椎间盘之间似乎确实存在二分法,这些椎间盘表现出强烈的冷H 2 O和显示出HCN和C 2 H 2的强烈发射的二分法。对外灰尘盘结构和内盘组成的影响的更好限制需要有关子结构形成时间尺度和圆盘年龄的更多信息,以及将(CO和CO 2)等(Hyper)挥发物(如CO和CO 2)捕获的重要性,例如H 2 O(例如H 2 O),以及CO的化学转化,将CO转化为挥发性较小的物种。
根据 1990 年《清洁空气法》第一章,美国环境保护署 (EPA) 正在制定法规,以减少各种消费品和商业产品的挥发性有机化合物 (VOC) 排放。本报告分析的受法规约束的具体产品是主要针对家庭消费者使用的 24 个产品类别(以下简称“消费品”)。消费品是下文定义的更广泛类别“消费品和商业产品”的一个子集。受法规约束的单个消费品列于表 1-1 中。某些其他类别的消费品和商业产品的 VOC 排放通过单独的法规进行控制。